A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems

In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2008-09, Vol.189 (2), p.399-420
Hauptverfasser: Li, Y.P., Huang, G.H., Nie, X.H., Nie, S.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 2
container_start_page 399
container_title European journal of operational research
container_volume 189
creator Li, Y.P.
Huang, G.H.
Nie, X.H.
Nie, S.L.
description In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.
doi_str_mv 10.1016/j.ejor.2007.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204143069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707004961</els_id><sourcerecordid>1440904061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-bfe3c712a82fa9843e57b6a77d7d41edadce43489843c3eda887d1e9699ea233</originalsourceid><addsrcrecordid>eNp9UE1r3DAQNaWFbtP-gZ5EoUc7-rAtG3oJoWlLAr3kLmbl8UZmLbmSdovz6ztmQ44VjGaGee_N8Iris-CV4KK9niqcQqwk57riTcVF_abYiU7Lsu1a_rbYcaV1KaXQ74sPKU2cc9GIZleEG5b_hjJlOCAbT8_PK4thf0qZOZ_xgJEtMRwizLPzBwYLdWCf2Bgis7CAdXllyxG838ZhZOjPLgY_o89wZDN40t0altaUcU4fi3cjHBN-eslXxePd98fbn-XD7x-_bm8eSlvrPpf7EZXVQkInR-i7WmGj9y1oPeihFjjAYLFWdbeNrKK-6_QgsG_7HkEqdVV8ucjSvX9OmLKZwil62mgkr0WteNsTSF5ANoaUIo5miW6GuBrBzWarmcxmq9lsNbwxZCuR7i-kiAvaVwbSIygmczYKRNfTv1IQtaPktpJioVB9b2rJzVOeSe3ry52QLBzHCN669Koq-bZaCcJ9u-CQPDs7jCZZh97i4CLabIbg_nf0Pzoqqhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204143069</pqid></control><display><type>article</type><title>A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Y.P. ; Huang, G.H. ; Nie, X.H. ; Nie, S.L.</creator><creatorcontrib>Li, Y.P. ; Huang, G.H. ; Nie, X.H. ; Nie, S.L.</creatorcontrib><description>In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2007.05.014</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Decision making models ; Decision theory. Utility theory ; Decision-making ; Environment ; Environmental management ; Exact sciences and technology ; Fuzzy logic ; Integer programming ; Linear programming ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Planning ; Robust programming ; Stochastic models ; Studies ; Two-stage stochastic ; Uncertainty ; Waste disposal</subject><ispartof>European journal of operational research, 2008-09, Vol.189 (2), p.399-420</ispartof><rights>2007</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-bfe3c712a82fa9843e57b6a77d7d41edadce43489843c3eda887d1e9699ea233</citedby><cites>FETCH-LOGICAL-c479t-bfe3c712a82fa9843e57b6a77d7d41edadce43489843c3eda887d1e9699ea233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2007.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4006,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20200731$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a189_3ay_3a2008_3ai_3a2_3ap_3a399-420.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Y.P.</creatorcontrib><creatorcontrib>Huang, G.H.</creatorcontrib><creatorcontrib>Nie, X.H.</creatorcontrib><creatorcontrib>Nie, S.L.</creatorcontrib><title>A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems</title><title>European journal of operational research</title><description>In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.</description><subject>Applied sciences</subject><subject>Decision making models</subject><subject>Decision theory. Utility theory</subject><subject>Decision-making</subject><subject>Environment</subject><subject>Environmental management</subject><subject>Exact sciences and technology</subject><subject>Fuzzy logic</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Planning</subject><subject>Robust programming</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Two-stage stochastic</subject><subject>Uncertainty</subject><subject>Waste disposal</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1r3DAQNaWFbtP-gZ5EoUc7-rAtG3oJoWlLAr3kLmbl8UZmLbmSdovz6ztmQ44VjGaGee_N8Iris-CV4KK9niqcQqwk57riTcVF_abYiU7Lsu1a_rbYcaV1KaXQ74sPKU2cc9GIZleEG5b_hjJlOCAbT8_PK4thf0qZOZ_xgJEtMRwizLPzBwYLdWCf2Bgis7CAdXllyxG838ZhZOjPLgY_o89wZDN40t0altaUcU4fi3cjHBN-eslXxePd98fbn-XD7x-_bm8eSlvrPpf7EZXVQkInR-i7WmGj9y1oPeihFjjAYLFWdbeNrKK-6_QgsG_7HkEqdVV8ucjSvX9OmLKZwil62mgkr0WteNsTSF5ANoaUIo5miW6GuBrBzWarmcxmq9lsNbwxZCuR7i-kiAvaVwbSIygmczYKRNfTv1IQtaPktpJioVB9b2rJzVOeSe3ry52QLBzHCN669Koq-bZaCcJ9u-CQPDs7jCZZh97i4CLabIbg_nf0Pzoqqhg</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Li, Y.P.</creator><creator>Huang, G.H.</creator><creator>Nie, X.H.</creator><creator>Nie, S.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems</title><author>Li, Y.P. ; Huang, G.H. ; Nie, X.H. ; Nie, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-bfe3c712a82fa9843e57b6a77d7d41edadce43489843c3eda887d1e9699ea233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Decision making models</topic><topic>Decision theory. Utility theory</topic><topic>Decision-making</topic><topic>Environment</topic><topic>Environmental management</topic><topic>Exact sciences and technology</topic><topic>Fuzzy logic</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Planning</topic><topic>Robust programming</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Two-stage stochastic</topic><topic>Uncertainty</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.P.</creatorcontrib><creatorcontrib>Huang, G.H.</creatorcontrib><creatorcontrib>Nie, X.H.</creatorcontrib><creatorcontrib>Nie, S.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y.P.</au><au>Huang, G.H.</au><au>Nie, X.H.</au><au>Nie, S.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems</atitle><jtitle>European journal of operational research</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>189</volume><issue>2</issue><spage>399</spage><epage>420</epage><pages>399-420</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2007.05.014</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2008-09, Vol.189 (2), p.399-420
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204143069
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Decision making models
Decision theory. Utility theory
Decision-making
Environment
Environmental management
Exact sciences and technology
Fuzzy logic
Integer programming
Linear programming
Mathematical programming
Operational research and scientific management
Operational research. Management science
Planning
Robust programming
Stochastic models
Studies
Two-stage stochastic
Uncertainty
Waste disposal
title A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-stage%20fuzzy%20robust%20integer%20programming%20approach%20for%20capacity%20planning%20of%20environmental%20management%20systems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Li,%20Y.P.&rft.date=2008-09-01&rft.volume=189&rft.issue=2&rft.spage=399&rft.epage=420&rft.pages=399-420&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2007.05.014&rft_dat=%3Cproquest_cross%3E1440904061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204143069&rft_id=info:pmid/&rft_els_id=S0377221707004961&rfr_iscdi=true