Metamodeling: Radial basis functions, versus polynomials

For many years, metamodels have been used in simulation to provide approximations to the input–output functions provided by a simulation model. In this paper, metamodels based on radial basis functions are applied to approximate test functions known from the literature. These tests were conducted to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2002-04, Vol.138 (1), p.142-154
Hauptverfasser: Hussain, Mohammed F., Barton, Russel R., Joshi, Sanjay B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 142
container_title European journal of operational research
container_volume 138
creator Hussain, Mohammed F.
Barton, Russel R.
Joshi, Sanjay B.
description For many years, metamodels have been used in simulation to provide approximations to the input–output functions provided by a simulation model. In this paper, metamodels based on radial basis functions are applied to approximate test functions known from the literature. These tests were conducted to gain insights into the behavior of these metamodels, their ease of computation and their ability to capture the shape and minima of the test functions. These metamodels are compared against polynomial metamodels by using surface and contour graphs of the error function (difference between metamodel and the given function) and by evaluating the numerical stability of the required computations. Full factorial and Latin hypercube designs were used to fit the metamodels. Graphical and statistical methods were used to analyze the test results. Factorial designs were generally more successful for fitting the test functions as compared to Latin hypercube designs. Radial basis function metamodels using factorial and Latin hypercube designs provided better fit than polynomial metamodels using full factorial designs.
doi_str_mv 10.1016/S0377-2217(01)00076-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204142586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221701000765</els_id><sourcerecordid>110817164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-af4cf16479932f2b989ed7b06d21f1572f937cc75e795d37f0e3ec33a3494d3b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKG4UrCaZ9O6ERl84YjgYx3a9EYzTJuatAPz701nxK2BmwPhnHPDh9AxwRcEk-zyDTMpU0qJPMXkDGMss1TsoAnJJU2zPMO7aPJn2UcHISyiiQgiJih_hr5sXA1L235eJa9lbctlUpXBhsQMre6ta8N5sgIfhpB0brluXRMt4RDtmShw9KtT9HF3-z57SOcv94-zm3mqueB9WhquDcm4LApGDa2KvIBaVjirKTFESGoKJrWWAmQhaiYNBgaasZLxgtesYlN0su3tvPseIPRq4QbfxpWKYk44FXkWTWJr0t6F4MGoztum9GtFsBoZqQ0jNQJQmKgNIyVi7mmb89CB_gtBPAvnIaiVYiVhebzXcSjGNIodH-N0o3KqiODqq29i2_W2DSKPlQWvgrbQaqitB92r2tl__vMDRjSGag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204142586</pqid></control><display><type>article</type><title>Metamodeling: Radial basis functions, versus polynomials</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Hussain, Mohammed F. ; Barton, Russel R. ; Joshi, Sanjay B.</creator><creatorcontrib>Hussain, Mohammed F. ; Barton, Russel R. ; Joshi, Sanjay B.</creatorcontrib><description>For many years, metamodels have been used in simulation to provide approximations to the input–output functions provided by a simulation model. In this paper, metamodels based on radial basis functions are applied to approximate test functions known from the literature. These tests were conducted to gain insights into the behavior of these metamodels, their ease of computation and their ability to capture the shape and minima of the test functions. These metamodels are compared against polynomial metamodels by using surface and contour graphs of the error function (difference between metamodel and the given function) and by evaluating the numerical stability of the required computations. Full factorial and Latin hypercube designs were used to fit the metamodels. Graphical and statistical methods were used to analyze the test results. Factorial designs were generally more successful for fitting the test functions as compared to Latin hypercube designs. Radial basis function metamodels using factorial and Latin hypercube designs provided better fit than polynomial metamodels using full factorial designs.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(01)00076-5</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Input output analysis ; Mathematical models ; Metamodeling ; Operations research ; Polynomial metamodels ; Radial basis functions ; Response surface ; Studies ; Theory</subject><ispartof>European journal of operational research, 2002-04, Vol.138 (1), p.142-154</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 1, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-af4cf16479932f2b989ed7b06d21f1572f937cc75e795d37f0e3ec33a3494d3b3</citedby><cites>FETCH-LOGICAL-c454t-af4cf16479932f2b989ed7b06d21f1572f937cc75e795d37f0e3ec33a3494d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(01)00076-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a138_3ay_3a2002_3ai_3a1_3ap_3a142-154.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussain, Mohammed F.</creatorcontrib><creatorcontrib>Barton, Russel R.</creatorcontrib><creatorcontrib>Joshi, Sanjay B.</creatorcontrib><title>Metamodeling: Radial basis functions, versus polynomials</title><title>European journal of operational research</title><description>For many years, metamodels have been used in simulation to provide approximations to the input–output functions provided by a simulation model. In this paper, metamodels based on radial basis functions are applied to approximate test functions known from the literature. These tests were conducted to gain insights into the behavior of these metamodels, their ease of computation and their ability to capture the shape and minima of the test functions. These metamodels are compared against polynomial metamodels by using surface and contour graphs of the error function (difference between metamodel and the given function) and by evaluating the numerical stability of the required computations. Full factorial and Latin hypercube designs were used to fit the metamodels. Graphical and statistical methods were used to analyze the test results. Factorial designs were generally more successful for fitting the test functions as compared to Latin hypercube designs. Radial basis function metamodels using factorial and Latin hypercube designs provided better fit than polynomial metamodels using full factorial designs.</description><subject>Input output analysis</subject><subject>Mathematical models</subject><subject>Metamodeling</subject><subject>Operations research</subject><subject>Polynomial metamodels</subject><subject>Radial basis functions</subject><subject>Response surface</subject><subject>Studies</subject><subject>Theory</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtLxDAUhYMoOI7-BKG4UrCaZ9O6ERl84YjgYx3a9EYzTJuatAPz701nxK2BmwPhnHPDh9AxwRcEk-zyDTMpU0qJPMXkDGMss1TsoAnJJU2zPMO7aPJn2UcHISyiiQgiJih_hr5sXA1L235eJa9lbctlUpXBhsQMre6ta8N5sgIfhpB0brluXRMt4RDtmShw9KtT9HF3-z57SOcv94-zm3mqueB9WhquDcm4LApGDa2KvIBaVjirKTFESGoKJrWWAmQhaiYNBgaasZLxgtesYlN0su3tvPseIPRq4QbfxpWKYk44FXkWTWJr0t6F4MGoztum9GtFsBoZqQ0jNQJQmKgNIyVi7mmb89CB_gtBPAvnIaiVYiVhebzXcSjGNIodH-N0o3KqiODqq29i2_W2DSKPlQWvgrbQaqitB92r2tl__vMDRjSGag</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Hussain, Mohammed F.</creator><creator>Barton, Russel R.</creator><creator>Joshi, Sanjay B.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020401</creationdate><title>Metamodeling: Radial basis functions, versus polynomials</title><author>Hussain, Mohammed F. ; Barton, Russel R. ; Joshi, Sanjay B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-af4cf16479932f2b989ed7b06d21f1572f937cc75e795d37f0e3ec33a3494d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Input output analysis</topic><topic>Mathematical models</topic><topic>Metamodeling</topic><topic>Operations research</topic><topic>Polynomial metamodels</topic><topic>Radial basis functions</topic><topic>Response surface</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Mohammed F.</creatorcontrib><creatorcontrib>Barton, Russel R.</creatorcontrib><creatorcontrib>Joshi, Sanjay B.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Mohammed F.</au><au>Barton, Russel R.</au><au>Joshi, Sanjay B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamodeling: Radial basis functions, versus polynomials</atitle><jtitle>European journal of operational research</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>138</volume><issue>1</issue><spage>142</spage><epage>154</epage><pages>142-154</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>For many years, metamodels have been used in simulation to provide approximations to the input–output functions provided by a simulation model. In this paper, metamodels based on radial basis functions are applied to approximate test functions known from the literature. These tests were conducted to gain insights into the behavior of these metamodels, their ease of computation and their ability to capture the shape and minima of the test functions. These metamodels are compared against polynomial metamodels by using surface and contour graphs of the error function (difference between metamodel and the given function) and by evaluating the numerical stability of the required computations. Full factorial and Latin hypercube designs were used to fit the metamodels. Graphical and statistical methods were used to analyze the test results. Factorial designs were generally more successful for fitting the test functions as compared to Latin hypercube designs. Radial basis function metamodels using factorial and Latin hypercube designs provided better fit than polynomial metamodels using full factorial designs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(01)00076-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2002-04, Vol.138 (1), p.142-154
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204142586
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Input output analysis
Mathematical models
Metamodeling
Operations research
Polynomial metamodels
Radial basis functions
Response surface
Studies
Theory
title Metamodeling: Radial basis functions, versus polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamodeling:%20Radial%20basis%20functions,%20versus%20polynomials&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Hussain,%20Mohammed%20F.&rft.date=2002-04-01&rft.volume=138&rft.issue=1&rft.spage=142&rft.epage=154&rft.pages=142-154&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(01)00076-5&rft_dat=%3Cproquest_cross%3E110817164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204142586&rft_id=info:pmid/&rft_els_id=S0377221701000765&rfr_iscdi=true