Hierarchical forecasting based on AR-GARCH model in a coherent structure

This paper compares the accuracy of the aggregate forecasting with the bottom-up forecasting based on AR-GARCH model for the return rate of simulated Dow Jones Industrial Average. Most of the existing stock price index studies did not consider the hierarchical structure and often missed the coherent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2007-01, Vol.176 (2), p.1033-1040
Hauptverfasser: Sohn, So Young, Lim, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1040
container_issue 2
container_start_page 1033
container_title European journal of operational research
container_volume 176
creator Sohn, So Young
Lim, Michael
description This paper compares the accuracy of the aggregate forecasting with the bottom-up forecasting based on AR-GARCH model for the return rate of simulated Dow Jones Industrial Average. Most of the existing stock price index studies did not consider the hierarchical structure and often missed the coherent relationships between individual components. In this experiment, we simulated 30 coherent components based on AR(2)-GARCH(1, 1) model. Then we evaluated the performance of both forecasting methods ignoring the coherent structure. The results of our experiment indicated that the accuracy of forecasting method varied depending on the correlation degree of 30 coherent components, however the data noise did not significantly influenced the performance of hierarchical forecasting method.
doi_str_mv 10.1016/j.ejor.2005.08.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204142200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221705007095</els_id><sourcerecordid>1155394141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-6c704c638d38f4ea893aa57469316d0dfafb88e380f2fc3cf26313d8988f2a533</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVoIdu0L5CTKPRodyTZkgy9LEubLSQUQnsWijzKyuzaW8kbyNtnzIb2FsFoBPr_meEbxq4F1AKE_jrUOEy5lgBtDbYG0V2wlbBGVtpqeMdWoIyppBTmkn0oZQAA0Yp2xbbbhNnnsEvB73mcMgZf5jQ-8gdfsOfTyNf31c36frPlh6nHPU8j9zxMO8w4zrzM-RTmU8aP7H30-4KfXvMV-_Pj--_Ntrr9dfNzs76tQiPNXOlgoAla2V7Z2KC3nfK-NY3ulNA99NHHB2tRWYgyBhWi1Eqo3nbWRulbpa7Y53PdY57-nrDMbphOeaSWTkIjGkkMSCTPopCnUjJGd8zp4POzE-AWYG5wCzC3AHNgHQEj093ZlPGI4Z8D6ZAUi3tyyguj6X6mIKuhlJYnxXH5BKWofANuNx-o3pfXSX0huDH7MaTyfxKrOiPalnTfzjokbE-0DldCwjFgn2gbs-un9NbYL9L2mUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204142200</pqid></control><display><type>article</type><title>Hierarchical forecasting based on AR-GARCH model in a coherent structure</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Sohn, So Young ; Lim, Michael</creator><creatorcontrib>Sohn, So Young ; Lim, Michael</creatorcontrib><description>This paper compares the accuracy of the aggregate forecasting with the bottom-up forecasting based on AR-GARCH model for the return rate of simulated Dow Jones Industrial Average. Most of the existing stock price index studies did not consider the hierarchical structure and often missed the coherent relationships between individual components. In this experiment, we simulated 30 coherent components based on AR(2)-GARCH(1, 1) model. Then we evaluated the performance of both forecasting methods ignoring the coherent structure. The results of our experiment indicated that the accuracy of forecasting method varied depending on the correlation degree of 30 coherent components, however the data noise did not significantly influenced the performance of hierarchical forecasting method.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2005.08.019</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; AR-GARCH model ; Business forecasts ; Coherent structure ; Dow Jones averages ; Dow Jones Industrial Average ; Exact sciences and technology ; Financial performance ; Forecasting ; Hierarchical forecasting ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Portfolio theory ; Rates of return ; Simulation ; Stochastic models ; Studies</subject><ispartof>European journal of operational research, 2007-01, Vol.176 (2), p.1033-1040</ispartof><rights>2005 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jan 16, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-6c704c638d38f4ea893aa57469316d0dfafb88e380f2fc3cf26313d8988f2a533</citedby><cites>FETCH-LOGICAL-c427t-6c704c638d38f4ea893aa57469316d0dfafb88e380f2fc3cf26313d8988f2a533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221705007095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18397155$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a176_3ay_3a2007_3ai_3a2_3ap_3a1033-1040.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Sohn, So Young</creatorcontrib><creatorcontrib>Lim, Michael</creatorcontrib><title>Hierarchical forecasting based on AR-GARCH model in a coherent structure</title><title>European journal of operational research</title><description>This paper compares the accuracy of the aggregate forecasting with the bottom-up forecasting based on AR-GARCH model for the return rate of simulated Dow Jones Industrial Average. Most of the existing stock price index studies did not consider the hierarchical structure and often missed the coherent relationships between individual components. In this experiment, we simulated 30 coherent components based on AR(2)-GARCH(1, 1) model. Then we evaluated the performance of both forecasting methods ignoring the coherent structure. The results of our experiment indicated that the accuracy of forecasting method varied depending on the correlation degree of 30 coherent components, however the data noise did not significantly influenced the performance of hierarchical forecasting method.</description><subject>Applied sciences</subject><subject>AR-GARCH model</subject><subject>Business forecasts</subject><subject>Coherent structure</subject><subject>Dow Jones averages</subject><subject>Dow Jones Industrial Average</subject><subject>Exact sciences and technology</subject><subject>Financial performance</subject><subject>Forecasting</subject><subject>Hierarchical forecasting</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Portfolio theory</subject><subject>Rates of return</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kcFq3DAQhkVoIdu0L5CTKPRodyTZkgy9LEubLSQUQnsWijzKyuzaW8kbyNtnzIb2FsFoBPr_meEbxq4F1AKE_jrUOEy5lgBtDbYG0V2wlbBGVtpqeMdWoIyppBTmkn0oZQAA0Yp2xbbbhNnnsEvB73mcMgZf5jQ-8gdfsOfTyNf31c36frPlh6nHPU8j9zxMO8w4zrzM-RTmU8aP7H30-4KfXvMV-_Pj--_Ntrr9dfNzs76tQiPNXOlgoAla2V7Z2KC3nfK-NY3ulNA99NHHB2tRWYgyBhWi1Eqo3nbWRulbpa7Y53PdY57-nrDMbphOeaSWTkIjGkkMSCTPopCnUjJGd8zp4POzE-AWYG5wCzC3AHNgHQEj093ZlPGI4Z8D6ZAUi3tyyguj6X6mIKuhlJYnxXH5BKWofANuNx-o3pfXSX0huDH7MaTyfxKrOiPalnTfzjokbE-0DldCwjFgn2gbs-un9NbYL9L2mUA</recordid><startdate>20070116</startdate><enddate>20070116</enddate><creator>Sohn, So Young</creator><creator>Lim, Michael</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070116</creationdate><title>Hierarchical forecasting based on AR-GARCH model in a coherent structure</title><author>Sohn, So Young ; Lim, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-6c704c638d38f4ea893aa57469316d0dfafb88e380f2fc3cf26313d8988f2a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>AR-GARCH model</topic><topic>Business forecasts</topic><topic>Coherent structure</topic><topic>Dow Jones averages</topic><topic>Dow Jones Industrial Average</topic><topic>Exact sciences and technology</topic><topic>Financial performance</topic><topic>Forecasting</topic><topic>Hierarchical forecasting</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Portfolio theory</topic><topic>Rates of return</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, So Young</creatorcontrib><creatorcontrib>Lim, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, So Young</au><au>Lim, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical forecasting based on AR-GARCH model in a coherent structure</atitle><jtitle>European journal of operational research</jtitle><date>2007-01-16</date><risdate>2007</risdate><volume>176</volume><issue>2</issue><spage>1033</spage><epage>1040</epage><pages>1033-1040</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This paper compares the accuracy of the aggregate forecasting with the bottom-up forecasting based on AR-GARCH model for the return rate of simulated Dow Jones Industrial Average. Most of the existing stock price index studies did not consider the hierarchical structure and often missed the coherent relationships between individual components. In this experiment, we simulated 30 coherent components based on AR(2)-GARCH(1, 1) model. Then we evaluated the performance of both forecasting methods ignoring the coherent structure. The results of our experiment indicated that the accuracy of forecasting method varied depending on the correlation degree of 30 coherent components, however the data noise did not significantly influenced the performance of hierarchical forecasting method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2005.08.019</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2007-01, Vol.176 (2), p.1033-1040
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204142200
source RePEc; Elsevier ScienceDirect Journals
subjects Applied sciences
AR-GARCH model
Business forecasts
Coherent structure
Dow Jones averages
Dow Jones Industrial Average
Exact sciences and technology
Financial performance
Forecasting
Hierarchical forecasting
Operational research and scientific management
Operational research. Management science
Operations research
Portfolio theory
Rates of return
Simulation
Stochastic models
Studies
title Hierarchical forecasting based on AR-GARCH model in a coherent structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20forecasting%20based%20on%20AR-GARCH%20model%20in%20a%20coherent%20structure&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Sohn,%20So%20Young&rft.date=2007-01-16&rft.volume=176&rft.issue=2&rft.spage=1033&rft.epage=1040&rft.pages=1033-1040&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2005.08.019&rft_dat=%3Cproquest_cross%3E1155394141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204142200&rft_id=info:pmid/&rft_els_id=S0377221705007095&rfr_iscdi=true