Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph

We consider four conjectures related to the largest eigenvalue of (the adjacency matrix of) a graph (i.e., to the index of the graph). Three of them have been formulated after some experiments with the programming system AutoGraphiX, designed for finding extremal graphs with respect to given propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2008-12, Vol.191 (3), p.661-676
Hauptverfasser: Aouchiche, M., Bell, F.K., Cvetković, D., Hansen, P., Rowlinson, P., Simić, S.K., Stevanović, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 676
container_issue 3
container_start_page 661
container_title European journal of operational research
container_volume 191
creator Aouchiche, M.
Bell, F.K.
Cvetković, D.
Hansen, P.
Rowlinson, P.
Simić, S.K.
Stevanović, D.
description We consider four conjectures related to the largest eigenvalue of (the adjacency matrix of) a graph (i.e., to the index of the graph). Three of them have been formulated after some experiments with the programming system AutoGraphiX, designed for finding extremal graphs with respect to given properties by the use of variable neighborhood search. The conjectures are related to the maximal value of the irregularity and spectral spread in n-vertex graphs, to a Nordhaus–Gaddum type upper bound for the index, and to the maximal value of the index for graphs with given numbers of vertices and edges. None of the conjectures has been resolved so far. We present partial results and provide some indications that the conjectures are very hard.
doi_str_mv 10.1016/j.ejor.2006.12.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204141611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221707001245</els_id><sourcerecordid>1496030611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-9ae556889afe23381dac9a58a9e1ef087359aedce9ff5b629901d3098c4508e23</originalsourceid><addsrcrecordid>eNp9UcuK3DAQNCGBTDb5gZxEIEc7ankkS5BLWPIiCznkcRUauT228VhOyzNk_z49eNljGqr7UlUqSkXxGmQFEsy7scIxUaWkNBWoSmr3pNiBbVRprJFPi52sm6ZUCprnxYucRyklaNC7Iv8ONITDhGLG4dgfEvUptSJjoNiLLpHAvyvhKUziSGHpcyXAVOJHOqGIaR4xrmfCLAinsGIr1iTWHsUU6Ih5FeyJ8yVMZxSpE2HzeFk868KU8dXDvSl-ffr48_ZLeff989fbD3dl3Cu9li6g1sZaFzpUdW2hDdEFbYNDwE7aptZMaSO6rtMHo5yT0NbS2bjX0rLkpniz-S6U_pw5jh_TmWZ-0iu5hz0YACapjRQp5UzY-YWGU6B7D9Jfu_Wjv3brr916UJ67ZdG3TUS4YHxUIA9TMfuLrwM44H3PYKnlMzBqxsIwBrxpjO_XE7u9fcgZcgxTR2GOQ3505axaOVsz7_3GQy7tMiD5HAecI7YD8T_4Ng3_C_0PGJipcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204141611</pqid></control><display><type>article</type><title>Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Aouchiche, M. ; Bell, F.K. ; Cvetković, D. ; Hansen, P. ; Rowlinson, P. ; Simić, S.K. ; Stevanović, D.</creator><creatorcontrib>Aouchiche, M. ; Bell, F.K. ; Cvetković, D. ; Hansen, P. ; Rowlinson, P. ; Simić, S.K. ; Stevanović, D.</creatorcontrib><description>We consider four conjectures related to the largest eigenvalue of (the adjacency matrix of) a graph (i.e., to the index of the graph). Three of them have been formulated after some experiments with the programming system AutoGraphiX, designed for finding extremal graphs with respect to given properties by the use of variable neighborhood search. The conjectures are related to the maximal value of the irregularity and spectral spread in n-vertex graphs, to a Nordhaus–Gaddum type upper bound for the index, and to the maximal value of the index for graphs with given numbers of vertices and edges. None of the conjectures has been resolved so far. We present partial results and provide some indications that the conjectures are very hard.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2006.12.059</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjacency matrix ; Applied sciences ; AutoGraphiX ; Computer science; control theory; systems ; Conjectures ; Eigenvalues ; Exact sciences and technology ; Extremal graph ; Graph ; Graph theory ; Graphs ; Index ; Information retrieval. Graph ; Irregularity ; Largest eigenvalue ; Optimization algorithms ; Spectral spread ; Studies ; Theoretical computing ; Variable neighborhood search</subject><ispartof>European journal of operational research, 2008-12, Vol.191 (3), p.661-676</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Dec 16, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-9ae556889afe23381dac9a58a9e1ef087359aedce9ff5b629901d3098c4508e23</citedby><cites>FETCH-LOGICAL-c425t-9ae556889afe23381dac9a58a9e1ef087359aedce9ff5b629901d3098c4508e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2006.12.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,3993,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20452983$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a191_3ay_3a2008_3ai_3a3_3ap_3a661-676.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Aouchiche, M.</creatorcontrib><creatorcontrib>Bell, F.K.</creatorcontrib><creatorcontrib>Cvetković, D.</creatorcontrib><creatorcontrib>Hansen, P.</creatorcontrib><creatorcontrib>Rowlinson, P.</creatorcontrib><creatorcontrib>Simić, S.K.</creatorcontrib><creatorcontrib>Stevanović, D.</creatorcontrib><title>Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph</title><title>European journal of operational research</title><description>We consider four conjectures related to the largest eigenvalue of (the adjacency matrix of) a graph (i.e., to the index of the graph). Three of them have been formulated after some experiments with the programming system AutoGraphiX, designed for finding extremal graphs with respect to given properties by the use of variable neighborhood search. The conjectures are related to the maximal value of the irregularity and spectral spread in n-vertex graphs, to a Nordhaus–Gaddum type upper bound for the index, and to the maximal value of the index for graphs with given numbers of vertices and edges. None of the conjectures has been resolved so far. We present partial results and provide some indications that the conjectures are very hard.</description><subject>Adjacency matrix</subject><subject>Applied sciences</subject><subject>AutoGraphiX</subject><subject>Computer science; control theory; systems</subject><subject>Conjectures</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Extremal graph</subject><subject>Graph</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Index</subject><subject>Information retrieval. Graph</subject><subject>Irregularity</subject><subject>Largest eigenvalue</subject><subject>Optimization algorithms</subject><subject>Spectral spread</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Variable neighborhood search</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UcuK3DAQNCGBTDb5gZxEIEc7ankkS5BLWPIiCznkcRUauT228VhOyzNk_z49eNljGqr7UlUqSkXxGmQFEsy7scIxUaWkNBWoSmr3pNiBbVRprJFPi52sm6ZUCprnxYucRyklaNC7Iv8ONITDhGLG4dgfEvUptSJjoNiLLpHAvyvhKUziSGHpcyXAVOJHOqGIaR4xrmfCLAinsGIr1iTWHsUU6Ih5FeyJ8yVMZxSpE2HzeFk868KU8dXDvSl-ffr48_ZLeff989fbD3dl3Cu9li6g1sZaFzpUdW2hDdEFbYNDwE7aptZMaSO6rtMHo5yT0NbS2bjX0rLkpniz-S6U_pw5jh_TmWZ-0iu5hz0YACapjRQp5UzY-YWGU6B7D9Jfu_Wjv3brr916UJ67ZdG3TUS4YHxUIA9TMfuLrwM44H3PYKnlMzBqxsIwBrxpjO_XE7u9fcgZcgxTR2GOQ3505axaOVsz7_3GQy7tMiD5HAecI7YD8T_4Ng3_C_0PGJipcA</recordid><startdate>20081216</startdate><enddate>20081216</enddate><creator>Aouchiche, M.</creator><creator>Bell, F.K.</creator><creator>Cvetković, D.</creator><creator>Hansen, P.</creator><creator>Rowlinson, P.</creator><creator>Simić, S.K.</creator><creator>Stevanović, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081216</creationdate><title>Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph</title><author>Aouchiche, M. ; Bell, F.K. ; Cvetković, D. ; Hansen, P. ; Rowlinson, P. ; Simić, S.K. ; Stevanović, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-9ae556889afe23381dac9a58a9e1ef087359aedce9ff5b629901d3098c4508e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adjacency matrix</topic><topic>Applied sciences</topic><topic>AutoGraphiX</topic><topic>Computer science; control theory; systems</topic><topic>Conjectures</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Extremal graph</topic><topic>Graph</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Index</topic><topic>Information retrieval. Graph</topic><topic>Irregularity</topic><topic>Largest eigenvalue</topic><topic>Optimization algorithms</topic><topic>Spectral spread</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Variable neighborhood search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aouchiche, M.</creatorcontrib><creatorcontrib>Bell, F.K.</creatorcontrib><creatorcontrib>Cvetković, D.</creatorcontrib><creatorcontrib>Hansen, P.</creatorcontrib><creatorcontrib>Rowlinson, P.</creatorcontrib><creatorcontrib>Simić, S.K.</creatorcontrib><creatorcontrib>Stevanović, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aouchiche, M.</au><au>Bell, F.K.</au><au>Cvetković, D.</au><au>Hansen, P.</au><au>Rowlinson, P.</au><au>Simić, S.K.</au><au>Stevanović, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph</atitle><jtitle>European journal of operational research</jtitle><date>2008-12-16</date><risdate>2008</risdate><volume>191</volume><issue>3</issue><spage>661</spage><epage>676</epage><pages>661-676</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>We consider four conjectures related to the largest eigenvalue of (the adjacency matrix of) a graph (i.e., to the index of the graph). Three of them have been formulated after some experiments with the programming system AutoGraphiX, designed for finding extremal graphs with respect to given properties by the use of variable neighborhood search. The conjectures are related to the maximal value of the irregularity and spectral spread in n-vertex graphs, to a Nordhaus–Gaddum type upper bound for the index, and to the maximal value of the index for graphs with given numbers of vertices and edges. None of the conjectures has been resolved so far. We present partial results and provide some indications that the conjectures are very hard.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2006.12.059</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2008-12, Vol.191 (3), p.661-676
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204141611
source RePEc; Elsevier ScienceDirect Journals
subjects Adjacency matrix
Applied sciences
AutoGraphiX
Computer science
control theory
systems
Conjectures
Eigenvalues
Exact sciences and technology
Extremal graph
Graph
Graph theory
Graphs
Index
Information retrieval. Graph
Irregularity
Largest eigenvalue
Optimization algorithms
Spectral spread
Studies
Theoretical computing
Variable neighborhood search
title Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20neighborhood%20search%20for%20extremal%20graphs.%2016.%20Some%20conjectures%20related%20to%20the%20largest%20eigenvalue%20of%20a%20graph&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Aouchiche,%20M.&rft.date=2008-12-16&rft.volume=191&rft.issue=3&rft.spage=661&rft.epage=676&rft.pages=661-676&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2006.12.059&rft_dat=%3Cproquest_cross%3E1496030611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204141611&rft_id=info:pmid/&rft_els_id=S0377221707001245&rfr_iscdi=true