Analyzing mathematical models with inductive learning networks

After building and validating a mathematical model, the decision maker frequently solves (often many times) a slightly different version of the model. That is, by changing various input parameters and re-running different model instances, he tries to develop insight(s) into the workings and tradeoff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1996-09, Vol.93 (2), p.387-401
Hauptverfasser: Steiger, David M., Sharda, Ramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 2
container_start_page 387
container_title European journal of operational research
container_volume 93
creator Steiger, David M.
Sharda, Ramesh
description After building and validating a mathematical model, the decision maker frequently solves (often many times) a slightly different version of the model. That is, by changing various input parameters and re-running different model instances, he tries to develop insight(s) into the workings and tradeoffs of the complex system represented by the model. However, very little research has been devoted to helping the decision maker in this important model analysis endeavor. This paper investigates the application of two inductive learning technologies, backpropagation neural networks and the group method of data handling, to the analysis of multiple instances of a mathematical model. Specifically, these two techniques are compared in the analysis tasks of identifying key factors and determining key relations between uncertain and/or unknown model parameters and the associated objective function values.
doi_str_mv 10.1016/0377-2217(96)00036-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204139115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221796000367</els_id><sourcerecordid>10386789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-58adf7250f294dc8b4113839e45cd28eb478c7d41a4fcf7e391f666033f984333</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMXgShejySQzSTaFIj4puNF1SDN3bOq8TNKW-uvNMNKlgXMvge8cLgehS4JvCSbFHaacp1lG-LUsbjDGtEj5EZoQwbO0EAU-RpMDcorOvF9HiOQkn6DZvNX1_se2n0mjwwrisEbXSdOVUPtkZ8MqsW25McFuIalBu3ZgWwi7zn35c3RS6drDxd-eoo_Hh_f753Tx9vRyP1-khkoR0lzosuJZjqtMstKIJSOECiqB5abMBCwZF4aXjGhWmYoDlaQqigJTWknBKKVTdDXm9q773oAPat1tXDzdqwwzEnmSR4iNkHGd9w4q1TvbaLdXBKuhKDW0oIYWlIyfoSjFo-11tDnowRw8EN-6c-DVVlEtaRz7KCKjlWoblUX1UVRwxTBRq9DEsNkYFtuDrQWnvLHQGiitAxNU2dn_r_kFe-OH3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204139115</pqid></control><display><type>article</type><title>Analyzing mathematical models with inductive learning networks</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Steiger, David M. ; Sharda, Ramesh</creator><creatorcontrib>Steiger, David M. ; Sharda, Ramesh</creatorcontrib><description>After building and validating a mathematical model, the decision maker frequently solves (often many times) a slightly different version of the model. That is, by changing various input parameters and re-running different model instances, he tries to develop insight(s) into the workings and tradeoffs of the complex system represented by the model. However, very little research has been devoted to helping the decision maker in this important model analysis endeavor. This paper investigates the application of two inductive learning technologies, backpropagation neural networks and the group method of data handling, to the analysis of multiple instances of a mathematical model. Specifically, these two techniques are compared in the analysis tasks of identifying key factors and determining key relations between uncertain and/or unknown model parameters and the associated objective function values.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(96)00036-7</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Decision support systems ; Group method of data handling (GMDH) ; Inductive learning networks ; Mathematical models ; Model analysis ; Neural networks</subject><ispartof>European journal of operational research, 1996-09, Vol.93 (2), p.387-401</ispartof><rights>1996</rights><rights>Copyright Elsevier Sequoia S.A. Sep 6, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-58adf7250f294dc8b4113839e45cd28eb478c7d41a4fcf7e391f666033f984333</citedby><cites>FETCH-LOGICAL-c398t-58adf7250f294dc8b4113839e45cd28eb478c7d41a4fcf7e391f666033f984333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(96)00036-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4006,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a93_3ay_3a1996_3ai_3a2_3ap_3a387-401.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Steiger, David M.</creatorcontrib><creatorcontrib>Sharda, Ramesh</creatorcontrib><title>Analyzing mathematical models with inductive learning networks</title><title>European journal of operational research</title><description>After building and validating a mathematical model, the decision maker frequently solves (often many times) a slightly different version of the model. That is, by changing various input parameters and re-running different model instances, he tries to develop insight(s) into the workings and tradeoffs of the complex system represented by the model. However, very little research has been devoted to helping the decision maker in this important model analysis endeavor. This paper investigates the application of two inductive learning technologies, backpropagation neural networks and the group method of data handling, to the analysis of multiple instances of a mathematical model. Specifically, these two techniques are compared in the analysis tasks of identifying key factors and determining key relations between uncertain and/or unknown model parameters and the associated objective function values.</description><subject>Decision support systems</subject><subject>Group method of data handling (GMDH)</subject><subject>Inductive learning networks</subject><subject>Mathematical models</subject><subject>Model analysis</subject><subject>Neural networks</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtLAzEUhYMoWKv_wMXgShejySQzSTaFIj4puNF1SDN3bOq8TNKW-uvNMNKlgXMvge8cLgehS4JvCSbFHaacp1lG-LUsbjDGtEj5EZoQwbO0EAU-RpMDcorOvF9HiOQkn6DZvNX1_se2n0mjwwrisEbXSdOVUPtkZ8MqsW25McFuIalBu3ZgWwi7zn35c3RS6drDxd-eoo_Hh_f753Tx9vRyP1-khkoR0lzosuJZjqtMstKIJSOECiqB5abMBCwZF4aXjGhWmYoDlaQqigJTWknBKKVTdDXm9q773oAPat1tXDzdqwwzEnmSR4iNkHGd9w4q1TvbaLdXBKuhKDW0oIYWlIyfoSjFo-11tDnowRw8EN-6c-DVVlEtaRz7KCKjlWoblUX1UVRwxTBRq9DEsNkYFtuDrQWnvLHQGiitAxNU2dn_r_kFe-OH3w</recordid><startdate>19960906</startdate><enddate>19960906</enddate><creator>Steiger, David M.</creator><creator>Sharda, Ramesh</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960906</creationdate><title>Analyzing mathematical models with inductive learning networks</title><author>Steiger, David M. ; Sharda, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-58adf7250f294dc8b4113839e45cd28eb478c7d41a4fcf7e391f666033f984333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Decision support systems</topic><topic>Group method of data handling (GMDH)</topic><topic>Inductive learning networks</topic><topic>Mathematical models</topic><topic>Model analysis</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steiger, David M.</creatorcontrib><creatorcontrib>Sharda, Ramesh</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steiger, David M.</au><au>Sharda, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing mathematical models with inductive learning networks</atitle><jtitle>European journal of operational research</jtitle><date>1996-09-06</date><risdate>1996</risdate><volume>93</volume><issue>2</issue><spage>387</spage><epage>401</epage><pages>387-401</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>After building and validating a mathematical model, the decision maker frequently solves (often many times) a slightly different version of the model. That is, by changing various input parameters and re-running different model instances, he tries to develop insight(s) into the workings and tradeoffs of the complex system represented by the model. However, very little research has been devoted to helping the decision maker in this important model analysis endeavor. This paper investigates the application of two inductive learning technologies, backpropagation neural networks and the group method of data handling, to the analysis of multiple instances of a mathematical model. Specifically, these two techniques are compared in the analysis tasks of identifying key factors and determining key relations between uncertain and/or unknown model parameters and the associated objective function values.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(96)00036-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1996-09, Vol.93 (2), p.387-401
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204139115
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Decision support systems
Group method of data handling (GMDH)
Inductive learning networks
Mathematical models
Model analysis
Neural networks
title Analyzing mathematical models with inductive learning networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20mathematical%20models%20with%20inductive%20learning%20networks&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Steiger,%20David%20M.&rft.date=1996-09-06&rft.volume=93&rft.issue=2&rft.spage=387&rft.epage=401&rft.pages=387-401&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(96)00036-7&rft_dat=%3Cproquest_cross%3E10386789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204139115&rft_id=info:pmid/&rft_els_id=0377221796000367&rfr_iscdi=true