A new approach for solving repair limit problems
The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certai...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1999-02, Vol.113 (1), p.137-146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | European journal of operational research |
container_volume | 113 |
creator | Dagpunar, J.S. |
description | The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods. |
doi_str_mv | 10.1016/S0377-2217(97)00446-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204138275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221797004463</els_id><sourcerecordid>38851229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EoYgP-lDNZ9M8iQy_cOCD-hzS9NZldG1Nusn-vek25qOB5FzIOfeeexA6J_iGYJLdvmMmZUopkVdKXmPMeZayAzQiuaRplmf4EI32lGN0EsIcY0wEESOE75MGfhLTdb41dpZUrU9CW69c85V46IzzSe0Wrk_if1HDIpyio8rUAc52OEafjw8fk-d0-vb0Mrmfppbnok-BGkbBmNxWBSuNZTRXTFksS8g5tari2JCSUi4VZAWrlLWYQWGEoMIUWLAxutj2jYO_lxB6PW-XvokjNcWcsJzKgSS2JOvbEDxUuvNuYfxaE6yHbPQmGz0srpXUm2w0i7rXrS6uCHYvgnjmrYegV5oZQlh810OllIrghjLebkAmNYm9Zv0idrvcWTXBmrryprEu_FnJRcYJj7S7LQ1ibCsHXgfroLFQOg-212Xr_rH9C93hkH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204138275</pqid></control><display><type>article</type><title>A new approach for solving repair limit problems</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Dagpunar, J.S.</creator><creatorcontrib>Dagpunar, J.S.</creatorcontrib><description>The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(97)00446-3</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Decision making ; Exact sciences and technology ; Maintenance ; Markov processes ; Mathematical analysis ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Probability and statistics ; Probability theory and stochastic processes ; Reliability theory. Replacement problems ; Repair ; Repair & maintenance ; Repair limit ; Replacement ; Sciences and techniques of general use ; Studies</subject><ispartof>European journal of operational research, 1999-02, Vol.113 (1), p.137-146</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 16, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</citedby><cites>FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221797004463$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1856414$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a113_3ay_3a1999_3ai_3a1_3ap_3a137-146.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagpunar, J.S.</creatorcontrib><title>A new approach for solving repair limit problems</title><title>European journal of operational research</title><description>The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.</description><subject>Applied sciences</subject><subject>Decision making</subject><subject>Exact sciences and technology</subject><subject>Maintenance</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Reliability theory. Replacement problems</subject><subject>Repair</subject><subject>Repair & maintenance</subject><subject>Repair limit</subject><subject>Replacement</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUF1LwzAUDaLgnP4EoYgP-lDNZ9M8iQy_cOCD-hzS9NZldG1Nusn-vek25qOB5FzIOfeeexA6J_iGYJLdvmMmZUopkVdKXmPMeZayAzQiuaRplmf4EI32lGN0EsIcY0wEESOE75MGfhLTdb41dpZUrU9CW69c85V46IzzSe0Wrk_if1HDIpyio8rUAc52OEafjw8fk-d0-vb0Mrmfppbnok-BGkbBmNxWBSuNZTRXTFksS8g5tari2JCSUi4VZAWrlLWYQWGEoMIUWLAxutj2jYO_lxB6PW-XvokjNcWcsJzKgSS2JOvbEDxUuvNuYfxaE6yHbPQmGz0srpXUm2w0i7rXrS6uCHYvgnjmrYegV5oZQlh810OllIrghjLebkAmNYm9Zv0idrvcWTXBmrryprEu_FnJRcYJj7S7LQ1ibCsHXgfroLFQOg-212Xr_rH9C93hkH0</recordid><startdate>19990216</startdate><enddate>19990216</enddate><creator>Dagpunar, J.S.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990216</creationdate><title>A new approach for solving repair limit problems</title><author>Dagpunar, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Decision making</topic><topic>Exact sciences and technology</topic><topic>Maintenance</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Reliability theory. Replacement problems</topic><topic>Repair</topic><topic>Repair & maintenance</topic><topic>Repair limit</topic><topic>Replacement</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagpunar, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagpunar, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach for solving repair limit problems</atitle><jtitle>European journal of operational research</jtitle><date>1999-02-16</date><risdate>1999</risdate><volume>113</volume><issue>1</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(97)00446-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1999-02, Vol.113 (1), p.137-146 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204138275 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Applied sciences Decision making Exact sciences and technology Maintenance Markov processes Mathematical analysis Mathematics Operational research and scientific management Operational research. Management science Operations research Probability and statistics Probability theory and stochastic processes Reliability theory. Replacement problems Repair Repair & maintenance Repair limit Replacement Sciences and techniques of general use Studies |
title | A new approach for solving repair limit problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20for%20solving%20repair%20limit%20problems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Dagpunar,%20J.S.&rft.date=1999-02-16&rft.volume=113&rft.issue=1&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(97)00446-3&rft_dat=%3Cproquest_cross%3E38851229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204138275&rft_id=info:pmid/&rft_els_id=S0377221797004463&rfr_iscdi=true |