A new approach for solving repair limit problems

The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1999-02, Vol.113 (1), p.137-146
1. Verfasser: Dagpunar, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 137
container_title European journal of operational research
container_volume 113
creator Dagpunar, J.S.
description The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.
doi_str_mv 10.1016/S0377-2217(97)00446-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204138275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221797004463</els_id><sourcerecordid>38851229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EoYgP-lDNZ9M8iQy_cOCD-hzS9NZldG1Nusn-vek25qOB5FzIOfeeexA6J_iGYJLdvmMmZUopkVdKXmPMeZayAzQiuaRplmf4EI32lGN0EsIcY0wEESOE75MGfhLTdb41dpZUrU9CW69c85V46IzzSe0Wrk_if1HDIpyio8rUAc52OEafjw8fk-d0-vb0Mrmfppbnok-BGkbBmNxWBSuNZTRXTFksS8g5tari2JCSUi4VZAWrlLWYQWGEoMIUWLAxutj2jYO_lxB6PW-XvokjNcWcsJzKgSS2JOvbEDxUuvNuYfxaE6yHbPQmGz0srpXUm2w0i7rXrS6uCHYvgnjmrYegV5oZQlh810OllIrghjLebkAmNYm9Zv0idrvcWTXBmrryprEu_FnJRcYJj7S7LQ1ibCsHXgfroLFQOg-212Xr_rH9C93hkH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204138275</pqid></control><display><type>article</type><title>A new approach for solving repair limit problems</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Dagpunar, J.S.</creator><creatorcontrib>Dagpunar, J.S.</creatorcontrib><description>The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(97)00446-3</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Decision making ; Exact sciences and technology ; Maintenance ; Markov processes ; Mathematical analysis ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Probability and statistics ; Probability theory and stochastic processes ; Reliability theory. Replacement problems ; Repair ; Repair &amp; maintenance ; Repair limit ; Replacement ; Sciences and techniques of general use ; Studies</subject><ispartof>European journal of operational research, 1999-02, Vol.113 (1), p.137-146</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 16, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</citedby><cites>FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221797004463$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1856414$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a113_3ay_3a1999_3ai_3a1_3ap_3a137-146.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagpunar, J.S.</creatorcontrib><title>A new approach for solving repair limit problems</title><title>European journal of operational research</title><description>The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.</description><subject>Applied sciences</subject><subject>Decision making</subject><subject>Exact sciences and technology</subject><subject>Maintenance</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Reliability theory. Replacement problems</subject><subject>Repair</subject><subject>Repair &amp; maintenance</subject><subject>Repair limit</subject><subject>Replacement</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUF1LwzAUDaLgnP4EoYgP-lDNZ9M8iQy_cOCD-hzS9NZldG1Nusn-vek25qOB5FzIOfeeexA6J_iGYJLdvmMmZUopkVdKXmPMeZayAzQiuaRplmf4EI32lGN0EsIcY0wEESOE75MGfhLTdb41dpZUrU9CW69c85V46IzzSe0Wrk_if1HDIpyio8rUAc52OEafjw8fk-d0-vb0Mrmfppbnok-BGkbBmNxWBSuNZTRXTFksS8g5tari2JCSUi4VZAWrlLWYQWGEoMIUWLAxutj2jYO_lxB6PW-XvokjNcWcsJzKgSS2JOvbEDxUuvNuYfxaE6yHbPQmGz0srpXUm2w0i7rXrS6uCHYvgnjmrYegV5oZQlh810OllIrghjLebkAmNYm9Zv0idrvcWTXBmrryprEu_FnJRcYJj7S7LQ1ibCsHXgfroLFQOg-212Xr_rH9C93hkH0</recordid><startdate>19990216</startdate><enddate>19990216</enddate><creator>Dagpunar, J.S.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990216</creationdate><title>A new approach for solving repair limit problems</title><author>Dagpunar, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-e2a32eaa8cfb3dac328939c07de842c9f40a1d22479e6b3f9cc03eba5525ab053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Decision making</topic><topic>Exact sciences and technology</topic><topic>Maintenance</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Reliability theory. Replacement problems</topic><topic>Repair</topic><topic>Repair &amp; maintenance</topic><topic>Repair limit</topic><topic>Replacement</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagpunar, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagpunar, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach for solving repair limit problems</atitle><jtitle>European journal of operational research</jtitle><date>1999-02-16</date><risdate>1999</risdate><volume>113</volume><issue>1</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The usual approach to finding optimal repair limits on failure of a component is to use a finite state approximation Markov Decision Process (MDP). In this paper an alternative approach is introduced. Assuming a stochastically increasing repair cost, the optimum solution is shown to satisfy a certain two-point boundary condition, first order differential equation. An asymptotic formula for the optimal repair limit function is derived. Numerical solutions are obtained for some Weibull and Special Erlang distributed time to failure distributions. The structural form of the repair limit function results in a solution procedure which is several orders of magnitude faster than is achievable using previous methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(97)00446-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1999-02, Vol.113 (1), p.137-146
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204138275
source RePEc; Elsevier ScienceDirect Journals
subjects Applied sciences
Decision making
Exact sciences and technology
Maintenance
Markov processes
Mathematical analysis
Mathematics
Operational research and scientific management
Operational research. Management science
Operations research
Probability and statistics
Probability theory and stochastic processes
Reliability theory. Replacement problems
Repair
Repair & maintenance
Repair limit
Replacement
Sciences and techniques of general use
Studies
title A new approach for solving repair limit problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20for%20solving%20repair%20limit%20problems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Dagpunar,%20J.S.&rft.date=1999-02-16&rft.volume=113&rft.issue=1&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(97)00446-3&rft_dat=%3Cproquest_cross%3E38851229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204138275&rft_id=info:pmid/&rft_els_id=S0377221797004463&rfr_iscdi=true