Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity
The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error t...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1998-07, Vol.108 (1), p.140-148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 140 |
container_title | European journal of operational research |
container_volume | 108 |
creator | Bojani, Antonio N. Caudill, Steven B. Ford, Jon M. |
description | The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error. |
doi_str_mv | 10.1016/S0377-2217(97)00101-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204135010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722179700101X</els_id><sourcerecordid>37997656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</originalsourceid><addsrcrecordid>eNqFUF1rFDEUDaLgWv0JQhAfLHQ0mSSTzJOUta3iSh-2D30LmcwNO8t8mUwL---92S37aiC5l-Sck3MPIR85-8oZr75tmdC6KEuuv9T6kjG8LB5fkRU3uiwqU7HXZHWGvCXvUtozRCmuVmTeDq7vi-SGuQc6x2mGuHSQ6BTon80VXd9vtlfUjS39cXNNIS3d4JYpHt9DnEbERjpMLfSJdiNddlkEEoweMmQHC8QpeWgdUn23HN6TN8H1CT681AvycHvzsP5ZbO7vfq2vN4WXRi1F8K0SWmnGQbXSC-1YUwXeNjIoaIRppYBGShGcl77SzhjVOF5DAxVXLIgL8ukkiyP9fULfdj89xRF_tCWTXChMCUHqBPLoMUUIdo44XzxYzmyO1h6jtTk3W2t7jNY-Iu_3iRdhBn8mAa79hNPbZyscZwbPQ-7qOrddbnHPuUr8QBq7WwZU-_xi1SXv-hDd6Lt0Vi1FyU1dI-z7CYZRwzPGbpPvcs5tF8Evtp26_9j-B9S4p3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204135010</pqid></control><display><type>article</type><title>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bojani, Antonio N. ; Caudill, Steven B. ; Ford, Jon M.</creator><creatorcontrib>Bojani, Antonio N. ; Caudill, Steven B. ; Ford, Jon M.</creatorcontrib><description>The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(97)00101-X</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Data envelopment analysis ; Exact sciences and technology ; Linear inference, regression ; Mathematical models ; Mathematics ; Maximum strategies ; Monte Carlo simulation ; Operations research ; Probability and statistics ; Regression ; Sciences and techniques of general use ; Statistics ; Stochastic frontier ; Studies</subject><ispartof>European journal of operational research, 1998-07, Vol.108 (1), p.140-148</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 1, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</citedby><cites>FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(97)00101-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4006,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2321899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a108_3ay_3a1998_3ai_3a1_3ap_3a140-148.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bojani, Antonio N.</creatorcontrib><creatorcontrib>Caudill, Steven B.</creatorcontrib><creatorcontrib>Ford, Jon M.</creatorcontrib><title>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</title><title>European journal of operational research</title><description>The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.</description><subject>Data envelopment analysis</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum strategies</subject><subject>Monte Carlo simulation</subject><subject>Operations research</subject><subject>Probability and statistics</subject><subject>Regression</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic frontier</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUF1rFDEUDaLgWv0JQhAfLHQ0mSSTzJOUta3iSh-2D30LmcwNO8t8mUwL---92S37aiC5l-Sck3MPIR85-8oZr75tmdC6KEuuv9T6kjG8LB5fkRU3uiwqU7HXZHWGvCXvUtozRCmuVmTeDq7vi-SGuQc6x2mGuHSQ6BTon80VXd9vtlfUjS39cXNNIS3d4JYpHt9DnEbERjpMLfSJdiNddlkEEoweMmQHC8QpeWgdUn23HN6TN8H1CT681AvycHvzsP5ZbO7vfq2vN4WXRi1F8K0SWmnGQbXSC-1YUwXeNjIoaIRppYBGShGcl77SzhjVOF5DAxVXLIgL8ukkiyP9fULfdj89xRF_tCWTXChMCUHqBPLoMUUIdo44XzxYzmyO1h6jtTk3W2t7jNY-Iu_3iRdhBn8mAa79hNPbZyscZwbPQ-7qOrddbnHPuUr8QBq7WwZU-_xi1SXv-hDd6Lt0Vi1FyU1dI-z7CYZRwzPGbpPvcs5tF8Evtp26_9j-B9S4p3Q</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Bojani, Antonio N.</creator><creator>Caudill, Steven B.</creator><creator>Ford, Jon M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980701</creationdate><title>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</title><author>Bojani, Antonio N. ; Caudill, Steven B. ; Ford, Jon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Data envelopment analysis</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum strategies</topic><topic>Monte Carlo simulation</topic><topic>Operations research</topic><topic>Probability and statistics</topic><topic>Regression</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic frontier</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bojani, Antonio N.</creatorcontrib><creatorcontrib>Caudill, Steven B.</creatorcontrib><creatorcontrib>Ford, Jon M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bojani, Antonio N.</au><au>Caudill, Steven B.</au><au>Ford, Jon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</atitle><jtitle>European journal of operational research</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>108</volume><issue>1</issue><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(97)00101-X</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1998-07, Vol.108 (1), p.140-148 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204135010 |
source | RePEc; ScienceDirect Journals (5 years ago - present) |
subjects | Data envelopment analysis Exact sciences and technology Linear inference, regression Mathematical models Mathematics Maximum strategies Monte Carlo simulation Operations research Probability and statistics Regression Sciences and techniques of general use Statistics Stochastic frontier Studies |
title | Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-sample%20properties%20of%20ML,%20COLS,%20and%20DEA%20estimators%20of%20frontier%20models%20in%20the%20presence%20of%20heteroscedasticity&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Bojani,%20Antonio%20N.&rft.date=1998-07-01&rft.volume=108&rft.issue=1&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(97)00101-X&rft_dat=%3Cproquest_cross%3E37997656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204135010&rft_id=info:pmid/&rft_els_id=S037722179700101X&rfr_iscdi=true |