Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity

The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1998-07, Vol.108 (1), p.140-148
Hauptverfasser: Bojani, Antonio N., Caudill, Steven B., Ford, Jon M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 140
container_title European journal of operational research
container_volume 108
creator Bojani, Antonio N.
Caudill, Steven B.
Ford, Jon M.
description The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.
doi_str_mv 10.1016/S0377-2217(97)00101-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204135010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722179700101X</els_id><sourcerecordid>37997656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</originalsourceid><addsrcrecordid>eNqFUF1rFDEUDaLgWv0JQhAfLHQ0mSSTzJOUta3iSh-2D30LmcwNO8t8mUwL---92S37aiC5l-Sck3MPIR85-8oZr75tmdC6KEuuv9T6kjG8LB5fkRU3uiwqU7HXZHWGvCXvUtozRCmuVmTeDq7vi-SGuQc6x2mGuHSQ6BTon80VXd9vtlfUjS39cXNNIS3d4JYpHt9DnEbERjpMLfSJdiNddlkEEoweMmQHC8QpeWgdUn23HN6TN8H1CT681AvycHvzsP5ZbO7vfq2vN4WXRi1F8K0SWmnGQbXSC-1YUwXeNjIoaIRppYBGShGcl77SzhjVOF5DAxVXLIgL8ukkiyP9fULfdj89xRF_tCWTXChMCUHqBPLoMUUIdo44XzxYzmyO1h6jtTk3W2t7jNY-Iu_3iRdhBn8mAa79hNPbZyscZwbPQ-7qOrddbnHPuUr8QBq7WwZU-_xi1SXv-hDd6Lt0Vi1FyU1dI-z7CYZRwzPGbpPvcs5tF8Evtp26_9j-B9S4p3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204135010</pqid></control><display><type>article</type><title>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bojani, Antonio N. ; Caudill, Steven B. ; Ford, Jon M.</creator><creatorcontrib>Bojani, Antonio N. ; Caudill, Steven B. ; Ford, Jon M.</creatorcontrib><description>The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/S0377-2217(97)00101-X</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Data envelopment analysis ; Exact sciences and technology ; Linear inference, regression ; Mathematical models ; Mathematics ; Maximum strategies ; Monte Carlo simulation ; Operations research ; Probability and statistics ; Regression ; Sciences and techniques of general use ; Statistics ; Stochastic frontier ; Studies</subject><ispartof>European journal of operational research, 1998-07, Vol.108 (1), p.140-148</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 1, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</citedby><cites>FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-2217(97)00101-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4006,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2321899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a108_3ay_3a1998_3ai_3a1_3ap_3a140-148.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bojani, Antonio N.</creatorcontrib><creatorcontrib>Caudill, Steven B.</creatorcontrib><creatorcontrib>Ford, Jon M.</creatorcontrib><title>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</title><title>European journal of operational research</title><description>The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.</description><subject>Data envelopment analysis</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum strategies</subject><subject>Monte Carlo simulation</subject><subject>Operations research</subject><subject>Probability and statistics</subject><subject>Regression</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic frontier</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUF1rFDEUDaLgWv0JQhAfLHQ0mSSTzJOUta3iSh-2D30LmcwNO8t8mUwL---92S37aiC5l-Sck3MPIR85-8oZr75tmdC6KEuuv9T6kjG8LB5fkRU3uiwqU7HXZHWGvCXvUtozRCmuVmTeDq7vi-SGuQc6x2mGuHSQ6BTon80VXd9vtlfUjS39cXNNIS3d4JYpHt9DnEbERjpMLfSJdiNddlkEEoweMmQHC8QpeWgdUn23HN6TN8H1CT681AvycHvzsP5ZbO7vfq2vN4WXRi1F8K0SWmnGQbXSC-1YUwXeNjIoaIRppYBGShGcl77SzhjVOF5DAxVXLIgL8ukkiyP9fULfdj89xRF_tCWTXChMCUHqBPLoMUUIdo44XzxYzmyO1h6jtTk3W2t7jNY-Iu_3iRdhBn8mAa79hNPbZyscZwbPQ-7qOrddbnHPuUr8QBq7WwZU-_xi1SXv-hDd6Lt0Vi1FyU1dI-z7CYZRwzPGbpPvcs5tF8Evtp26_9j-B9S4p3Q</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Bojani, Antonio N.</creator><creator>Caudill, Steven B.</creator><creator>Ford, Jon M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980701</creationdate><title>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</title><author>Bojani, Antonio N. ; Caudill, Steven B. ; Ford, Jon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-fcd5375701e5d4c37a0b6f1db4f5eb38d43eb443fac4c67a885ba19ebe6150f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Data envelopment analysis</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum strategies</topic><topic>Monte Carlo simulation</topic><topic>Operations research</topic><topic>Probability and statistics</topic><topic>Regression</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic frontier</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bojani, Antonio N.</creatorcontrib><creatorcontrib>Caudill, Steven B.</creatorcontrib><creatorcontrib>Ford, Jon M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bojani, Antonio N.</au><au>Caudill, Steven B.</au><au>Ford, Jon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity</atitle><jtitle>European journal of operational research</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>108</volume><issue>1</issue><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The purpose of this paper is to examine the small sample properties of maximum likelihood (ML), corrected ordinary least squares (COLS), and data envelopment analysis (DEA) estimators of the parameters in frontier models in the presence of heteroscedasticity in the two-sided, or measurement, error term. Using Monte Carlo methods, we find that heteroscedasticity in the two-sided error term introduces substantial biases into ML, COLS, and DEA estimators. Although none of the estimators perform well, both ML and COLS are found to be superior to DEA in the presence of heteroscedasticity in the two-sided error.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-2217(97)00101-X</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1998-07, Vol.108 (1), p.140-148
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204135010
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Data envelopment analysis
Exact sciences and technology
Linear inference, regression
Mathematical models
Mathematics
Maximum strategies
Monte Carlo simulation
Operations research
Probability and statistics
Regression
Sciences and techniques of general use
Statistics
Stochastic frontier
Studies
title Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-sample%20properties%20of%20ML,%20COLS,%20and%20DEA%20estimators%20of%20frontier%20models%20in%20the%20presence%20of%20heteroscedasticity&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Bojani,%20Antonio%20N.&rft.date=1998-07-01&rft.volume=108&rft.issue=1&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/S0377-2217(97)00101-X&rft_dat=%3Cproquest_cross%3E37997656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204135010&rft_id=info:pmid/&rft_els_id=S037722179700101X&rfr_iscdi=true