Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry
Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Sem...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1996-02, Vol.88 (3), p.525 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 525 |
container_title | European journal of operational research |
container_volume | 88 |
creator | Charnes, Abraham Gallegos, Armando Li, Hongyu |
description | Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_204131924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9647484</sourcerecordid><originalsourceid>FETCH-proquest_journals_2041319243</originalsourceid><addsrcrecordid>eNqNjsFqwzAMhs1YoVm7dxC7B2ynbdpj2Tp22Gn0XtREZiqOnclOoS-xZ54Ze4CdJMH3f_rvVGW2ra03242-V5Vu2ra21rRz9ZDSRWtt1mZdqe-PeJ5S9jcg57hjChlGFBwoC3fgJIbMJAmujDBMPvPoucPMV4KXwx5cFOjjQCkXGkMPHDJJKEAM6CGOJL97guggfxK8lzPAfqCiR0AWz4FKqi8t5LZUM4c-0ePfXKin18Px-a0eJX5N5cvpEqei9-lk9co0ZmdXzb-gH6f3WAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204131924</pqid></control><display><type>article</type><title>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</title><source>Access via ScienceDirect (Elsevier)</source><creator>Charnes, Abraham ; Gallegos, Armando ; Li, Hongyu</creator><creatorcontrib>Charnes, Abraham ; Gallegos, Armando ; Li, Hongyu</creatorcontrib><description>Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier Sequoia S.A</publisher><subject>Airline industry ; Data envelopment analysis ; Goal programming ; Operations research ; Production functions ; Random variables ; Stochastic models ; Studies ; Uncertainty</subject><ispartof>European journal of operational research, 1996-02, Vol.88 (3), p.525</ispartof><rights>Copyright Elsevier Sequoia S.A. Feb 8, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Charnes, Abraham</creatorcontrib><creatorcontrib>Gallegos, Armando</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><title>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</title><title>European journal of operational research</title><description>Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.</description><subject>Airline industry</subject><subject>Data envelopment analysis</subject><subject>Goal programming</subject><subject>Operations research</subject><subject>Production functions</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNjsFqwzAMhs1YoVm7dxC7B2ynbdpj2Tp22Gn0XtREZiqOnclOoS-xZ54Ze4CdJMH3f_rvVGW2ra03242-V5Vu2ra21rRz9ZDSRWtt1mZdqe-PeJ5S9jcg57hjChlGFBwoC3fgJIbMJAmujDBMPvPoucPMV4KXwx5cFOjjQCkXGkMPHDJJKEAM6CGOJL97guggfxK8lzPAfqCiR0AWz4FKqi8t5LZUM4c-0ePfXKin18Px-a0eJX5N5cvpEqei9-lk9co0ZmdXzb-gH6f3WAM</recordid><startdate>19960208</startdate><enddate>19960208</enddate><creator>Charnes, Abraham</creator><creator>Gallegos, Armando</creator><creator>Li, Hongyu</creator><general>Elsevier Sequoia S.A</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960208</creationdate><title>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</title><author>Charnes, Abraham ; Gallegos, Armando ; Li, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2041319243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Airline industry</topic><topic>Data envelopment analysis</topic><topic>Goal programming</topic><topic>Operations research</topic><topic>Production functions</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charnes, Abraham</creatorcontrib><creatorcontrib>Gallegos, Armando</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charnes, Abraham</au><au>Gallegos, Armando</au><au>Li, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</atitle><jtitle>European journal of operational research</jtitle><date>1996-02-08</date><risdate>1996</risdate><volume>88</volume><issue>3</issue><spage>525</spage><pages>525-</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.</abstract><cop>Amsterdam</cop><pub>Elsevier Sequoia S.A</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1996-02, Vol.88 (3), p.525 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204131924 |
source | Access via ScienceDirect (Elsevier) |
subjects | Airline industry Data envelopment analysis Goal programming Operations research Production functions Random variables Stochastic models Studies Uncertainty |
title | Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustly%20efficient%20parametric%20frontiers%20via%20multiplicative%20DEA%20for%20domestic%20and%20international%20operations%20of%20the%20Latin%20America%20airline%20industry&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Charnes,%20Abraham&rft.date=1996-02-08&rft.volume=88&rft.issue=3&rft.spage=525&rft.pages=525-&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/&rft_dat=%3Cproquest%3E9647484%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204131924&rft_id=info:pmid/&rfr_iscdi=true |