Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry

Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Sem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1996-02, Vol.88 (3), p.525
Hauptverfasser: Charnes, Abraham, Gallegos, Armando, Li, Hongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 525
container_title European journal of operational research
container_volume 88
creator Charnes, Abraham
Gallegos, Armando
Li, Hongyu
description Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_204131924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9647484</sourcerecordid><originalsourceid>FETCH-proquest_journals_2041319243</originalsourceid><addsrcrecordid>eNqNjsFqwzAMhs1YoVm7dxC7B2ynbdpj2Tp22Gn0XtREZiqOnclOoS-xZ54Ze4CdJMH3f_rvVGW2ra03242-V5Vu2ra21rRz9ZDSRWtt1mZdqe-PeJ5S9jcg57hjChlGFBwoC3fgJIbMJAmujDBMPvPoucPMV4KXwx5cFOjjQCkXGkMPHDJJKEAM6CGOJL97guggfxK8lzPAfqCiR0AWz4FKqi8t5LZUM4c-0ePfXKin18Px-a0eJX5N5cvpEqei9-lk9co0ZmdXzb-gH6f3WAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204131924</pqid></control><display><type>article</type><title>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</title><source>Access via ScienceDirect (Elsevier)</source><creator>Charnes, Abraham ; Gallegos, Armando ; Li, Hongyu</creator><creatorcontrib>Charnes, Abraham ; Gallegos, Armando ; Li, Hongyu</creatorcontrib><description>Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier Sequoia S.A</publisher><subject>Airline industry ; Data envelopment analysis ; Goal programming ; Operations research ; Production functions ; Random variables ; Stochastic models ; Studies ; Uncertainty</subject><ispartof>European journal of operational research, 1996-02, Vol.88 (3), p.525</ispartof><rights>Copyright Elsevier Sequoia S.A. Feb 8, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Charnes, Abraham</creatorcontrib><creatorcontrib>Gallegos, Armando</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><title>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</title><title>European journal of operational research</title><description>Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.</description><subject>Airline industry</subject><subject>Data envelopment analysis</subject><subject>Goal programming</subject><subject>Operations research</subject><subject>Production functions</subject><subject>Random variables</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNjsFqwzAMhs1YoVm7dxC7B2ynbdpj2Tp22Gn0XtREZiqOnclOoS-xZ54Ze4CdJMH3f_rvVGW2ra03242-V5Vu2ra21rRz9ZDSRWtt1mZdqe-PeJ5S9jcg57hjChlGFBwoC3fgJIbMJAmujDBMPvPoucPMV4KXwx5cFOjjQCkXGkMPHDJJKEAM6CGOJL97guggfxK8lzPAfqCiR0AWz4FKqi8t5LZUM4c-0ePfXKin18Px-a0eJX5N5cvpEqei9-lk9co0ZmdXzb-gH6f3WAM</recordid><startdate>19960208</startdate><enddate>19960208</enddate><creator>Charnes, Abraham</creator><creator>Gallegos, Armando</creator><creator>Li, Hongyu</creator><general>Elsevier Sequoia S.A</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960208</creationdate><title>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</title><author>Charnes, Abraham ; Gallegos, Armando ; Li, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2041319243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Airline industry</topic><topic>Data envelopment analysis</topic><topic>Goal programming</topic><topic>Operations research</topic><topic>Production functions</topic><topic>Random variables</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charnes, Abraham</creatorcontrib><creatorcontrib>Gallegos, Armando</creatorcontrib><creatorcontrib>Li, Hongyu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charnes, Abraham</au><au>Gallegos, Armando</au><au>Li, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry</atitle><jtitle>European journal of operational research</jtitle><date>1996-02-08</date><risdate>1996</risdate><volume>88</volume><issue>3</issue><spage>525</spage><pages>525-</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Previous studies of (parametric) aggregate frontiers have attempted to capture stochastic features of the random variables (i.e. inputs and outputs) by assuming a "risk" situation (where the probability distributions of the random variables are known). A new method invented by Charnes, Semple, Song, and Thomas is tested for the usual situations of uncertainty (where the probability distributions of the random variables involved in the technical inefficiencies are unknown) to build up global efficient production functions in the context of operations in the Latin American airline industry. This method develops an empirical efficient production function via a robustly efficient parametric frontier (REPF) in a 2-stage approach. As in the Charnes et al development using a multiplicative-DEA model, the marginal tradeoffs of the efficient production function are immediately available instead of being harassed by discontinuities of derivatives and numerical instabilities.</abstract><cop>Amsterdam</cop><pub>Elsevier Sequoia S.A</pub></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1996-02, Vol.88 (3), p.525
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204131924
source Access via ScienceDirect (Elsevier)
subjects Airline industry
Data envelopment analysis
Goal programming
Operations research
Production functions
Random variables
Stochastic models
Studies
Uncertainty
title Robustly efficient parametric frontiers via multiplicative DEA for domestic and international operations of the Latin America airline industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustly%20efficient%20parametric%20frontiers%20via%20multiplicative%20DEA%20for%20domestic%20and%20international%20operations%20of%20the%20Latin%20America%20airline%20industry&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Charnes,%20Abraham&rft.date=1996-02-08&rft.volume=88&rft.issue=3&rft.spage=525&rft.pages=525-&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/&rft_dat=%3Cproquest%3E9647484%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204131924&rft_id=info:pmid/&rfr_iscdi=true