Fuzzy fitness functions applied to engineering design problems

Engineering design is concerned with the creation of devices and systems, and encompasses many activities, including the creative activity of conceiving or synthesizing new devices and systems, as well as the analysis, refinement and testing of those concepts. If all information available to an engi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2005-11, Vol.166 (3), p.794-811
Hauptverfasser: Antonsson, Erik K., Sebastian, Hans-Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 811
container_issue 3
container_start_page 794
container_title European journal of operational research
container_volume 166
creator Antonsson, Erik K.
Sebastian, Hans-Jürgen
description Engineering design is concerned with the creation of devices and systems, and encompasses many activities, including the creative activity of conceiving or synthesizing new devices and systems, as well as the analysis, refinement and testing of those concepts. If all information available to an engineer were precise and deterministic, design would be straightforward. However, uncertainty of many forms is present throughout the design process. The uncertainty theories that are most relevant for engineering design are those that deal with a mixture of numerical, set or interval-valued and linguistic information. Populations of design alternatives can be generated using evolutionary methods [Antonsson and Cagan, Formal Engineering Design Synthesis, Cambridge University Press, Cambridge, 2001]. It has been shown that incorporating uncertainty, such as variations in the operating environment, simulated by variations in the evaluation of the fitness function, can synthesize designs that are robust to the variations. In this paper a class of fuzzy fitness functions ( F 3) and hybrid uncertainty fitness functions are introduced, which combine fuzzy and probabilistic types of uncertainties.
doi_str_mv 10.1016/j.ejor.2004.03.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204128637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221704004175</els_id><sourcerecordid>794502271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-5ed130bd87993cc58f2cc016157a2ee78002e82e0d89d9fc979a6f47be8d268f3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78A56K99ZJ0jYpiCDiFy540XPoJtM1ZTetSVdY_3pnWfFo4GUu770ZfoxdcCg48PqqL7AfYiEAygJkAWV1wGZcK5HXuoZDNgOpVC4EV8fsJKUeAHjFqxm7edh8f2-zzk8BU8q6TbCTH0LK2nFceXTZNGQYlj4gRh-WmcPklyEb47BY4TqdsaOuXSU8_52n7P3h_u3uKZ-_Pj7f3c5zK5tqyit0XMLCadU00tpKd8JauptXqhWISgMI1ALB6cY1nW1U09ZdqRaonah1J0_Z5b6XFn9uME2mHzYx0EojoORC11KRSexNNg4pRezMGP26jVvDwewwmd7sMJkdJgPSECYKvexDEUe0fwmkR1ZM5svIltc1_VsSRSsaniRJI0k1pdGcm49pTW3X-zYkGF8eo0nWY7DofEQ7GTf4_475ATA5imI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204128637</pqid></control><display><type>article</type><title>Fuzzy fitness functions applied to engineering design problems</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Antonsson, Erik K. ; Sebastian, Hans-Jürgen</creator><creatorcontrib>Antonsson, Erik K. ; Sebastian, Hans-Jürgen</creatorcontrib><description>Engineering design is concerned with the creation of devices and systems, and encompasses many activities, including the creative activity of conceiving or synthesizing new devices and systems, as well as the analysis, refinement and testing of those concepts. If all information available to an engineer were precise and deterministic, design would be straightforward. However, uncertainty of many forms is present throughout the design process. The uncertainty theories that are most relevant for engineering design are those that deal with a mixture of numerical, set or interval-valued and linguistic information. Populations of design alternatives can be generated using evolutionary methods [Antonsson and Cagan, Formal Engineering Design Synthesis, Cambridge University Press, Cambridge, 2001]. It has been shown that incorporating uncertainty, such as variations in the operating environment, simulated by variations in the evaluation of the fitness function, can synthesize designs that are robust to the variations. In this paper a class of fuzzy fitness functions ( F 3) and hybrid uncertainty fitness functions are introduced, which combine fuzzy and probabilistic types of uncertainties.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2004.03.045</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Decision support ; Design engineering ; Engineering design ; Fuzzy logic ; Fuzzy sets ; Genetic algorithms ; Mathematical functions ; Multiple criteria analysis ; Operations research ; Robustness ; Studies ; Uncertainty ; Uncertainty modeling</subject><ispartof>European journal of operational research, 2005-11, Vol.166 (3), p.794-811</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-5ed130bd87993cc58f2cc016157a2ee78002e82e0d89d9fc979a6f47be8d268f3</citedby><cites>FETCH-LOGICAL-c395t-5ed130bd87993cc58f2cc016157a2ee78002e82e0d89d9fc979a6f47be8d268f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2004.03.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a166_3ay_3a2005_3ai_3a3_3ap_3a794-811.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Antonsson, Erik K.</creatorcontrib><creatorcontrib>Sebastian, Hans-Jürgen</creatorcontrib><title>Fuzzy fitness functions applied to engineering design problems</title><title>European journal of operational research</title><description>Engineering design is concerned with the creation of devices and systems, and encompasses many activities, including the creative activity of conceiving or synthesizing new devices and systems, as well as the analysis, refinement and testing of those concepts. If all information available to an engineer were precise and deterministic, design would be straightforward. However, uncertainty of many forms is present throughout the design process. The uncertainty theories that are most relevant for engineering design are those that deal with a mixture of numerical, set or interval-valued and linguistic information. Populations of design alternatives can be generated using evolutionary methods [Antonsson and Cagan, Formal Engineering Design Synthesis, Cambridge University Press, Cambridge, 2001]. It has been shown that incorporating uncertainty, such as variations in the operating environment, simulated by variations in the evaluation of the fitness function, can synthesize designs that are robust to the variations. In this paper a class of fuzzy fitness functions ( F 3) and hybrid uncertainty fitness functions are introduced, which combine fuzzy and probabilistic types of uncertainties.</description><subject>Decision support</subject><subject>Design engineering</subject><subject>Engineering design</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Mathematical functions</subject><subject>Multiple criteria analysis</subject><subject>Operations research</subject><subject>Robustness</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty modeling</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kM1LxDAQxYMouH78A56K99ZJ0jYpiCDiFy540XPoJtM1ZTetSVdY_3pnWfFo4GUu770ZfoxdcCg48PqqL7AfYiEAygJkAWV1wGZcK5HXuoZDNgOpVC4EV8fsJKUeAHjFqxm7edh8f2-zzk8BU8q6TbCTH0LK2nFceXTZNGQYlj4gRh-WmcPklyEb47BY4TqdsaOuXSU8_52n7P3h_u3uKZ-_Pj7f3c5zK5tqyit0XMLCadU00tpKd8JauptXqhWISgMI1ALB6cY1nW1U09ZdqRaonah1J0_Z5b6XFn9uME2mHzYx0EojoORC11KRSexNNg4pRezMGP26jVvDwewwmd7sMJkdJgPSECYKvexDEUe0fwmkR1ZM5svIltc1_VsSRSsaniRJI0k1pdGcm49pTW3X-zYkGF8eo0nWY7DofEQ7GTf4_475ATA5imI</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Antonsson, Erik K.</creator><creator>Sebastian, Hans-Jürgen</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20051101</creationdate><title>Fuzzy fitness functions applied to engineering design problems</title><author>Antonsson, Erik K. ; Sebastian, Hans-Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-5ed130bd87993cc58f2cc016157a2ee78002e82e0d89d9fc979a6f47be8d268f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Decision support</topic><topic>Design engineering</topic><topic>Engineering design</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Mathematical functions</topic><topic>Multiple criteria analysis</topic><topic>Operations research</topic><topic>Robustness</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonsson, Erik K.</creatorcontrib><creatorcontrib>Sebastian, Hans-Jürgen</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonsson, Erik K.</au><au>Sebastian, Hans-Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy fitness functions applied to engineering design problems</atitle><jtitle>European journal of operational research</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>166</volume><issue>3</issue><spage>794</spage><epage>811</epage><pages>794-811</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Engineering design is concerned with the creation of devices and systems, and encompasses many activities, including the creative activity of conceiving or synthesizing new devices and systems, as well as the analysis, refinement and testing of those concepts. If all information available to an engineer were precise and deterministic, design would be straightforward. However, uncertainty of many forms is present throughout the design process. The uncertainty theories that are most relevant for engineering design are those that deal with a mixture of numerical, set or interval-valued and linguistic information. Populations of design alternatives can be generated using evolutionary methods [Antonsson and Cagan, Formal Engineering Design Synthesis, Cambridge University Press, Cambridge, 2001]. It has been shown that incorporating uncertainty, such as variations in the operating environment, simulated by variations in the evaluation of the fitness function, can synthesize designs that are robust to the variations. In this paper a class of fuzzy fitness functions ( F 3) and hybrid uncertainty fitness functions are introduced, which combine fuzzy and probabilistic types of uncertainties.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2004.03.045</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2005-11, Vol.166 (3), p.794-811
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204128637
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Decision support
Design engineering
Engineering design
Fuzzy logic
Fuzzy sets
Genetic algorithms
Mathematical functions
Multiple criteria analysis
Operations research
Robustness
Studies
Uncertainty
Uncertainty modeling
title Fuzzy fitness functions applied to engineering design problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20fitness%20functions%20applied%20to%20engineering%20design%20problems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Antonsson,%20Erik%20K.&rft.date=2005-11-01&rft.volume=166&rft.issue=3&rft.spage=794&rft.epage=811&rft.pages=794-811&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2004.03.045&rft_dat=%3Cproquest_cross%3E794502271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204128637&rft_id=info:pmid/&rft_els_id=S0377221704004175&rfr_iscdi=true