Approximating the noninferior set in multiobjective linear programmming problems

Algorithms are developed for approximating the noninferior set in the objective space for multiobjective linear programming problems with 3 or more objectives. A geometrical measure of error is used in controlling the number of extreme points needed in generating an approximation of desired accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1993-08, Vol.68 (3), p.356
Hauptverfasser: Solanki, Rajendra S, Appino, Perry A, Cohon, Jared L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 356
container_title European journal of operational research
container_volume 68
creator Solanki, Rajendra S
Appino, Perry A
Cohon, Jared L
description Algorithms are developed for approximating the noninferior set in the objective space for multiobjective linear programming problems with 3 or more objectives. A geometrical measure of error is used in controlling the number of extreme points needed in generating an approximation of desired accuracy. In more specific terms, the error in the approximation is estimated by computing the deviation of a polytope containing the entire noninferior set (the upper bounding polytope) from the lower bounding polytope whose interior is known to be inferior. Extreme points are added to the approximation in an attempt to reduce the deviation between the 2 polytopes in as few computations as possible. The facets in the approximation of the noninferior set are obtained by computing the convex hull of the extreme points generated by the algorithm. Suitable tests are developed to determine those facets of the convex hull that belong to the approximation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_204128421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1070853</sourcerecordid><originalsourceid>FETCH-proquest_journals_2041284213</originalsourceid><addsrcrecordid>eNqNi8kKwjAURYMoWId_CO4LSTqkWxHFpQv3ksprfSVDTVLx843gB7i6HO45M5LxRoq8bmo2JxkrpMyF4HJJViEMjDFe8Sojl_04evdGoyLansYHUOss2g48Ok8DRIqWmklHdO0A94gvoBotKE9T2HtljPmWCVoNJmzIolM6wPa3a7I7Ha-Hc56E5wQh3gY3eZuum2AlF00pePGX9AGifEEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204128421</pqid></control><display><type>article</type><title>Approximating the noninferior set in multiobjective linear programmming problems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Solanki, Rajendra S ; Appino, Perry A ; Cohon, Jared L</creator><creatorcontrib>Solanki, Rajendra S ; Appino, Perry A ; Cohon, Jared L</creatorcontrib><description>Algorithms are developed for approximating the noninferior set in the objective space for multiobjective linear programming problems with 3 or more objectives. A geometrical measure of error is used in controlling the number of extreme points needed in generating an approximation of desired accuracy. In more specific terms, the error in the approximation is estimated by computing the deviation of a polytope containing the entire noninferior set (the upper bounding polytope) from the lower bounding polytope whose interior is known to be inferior. Extreme points are added to the approximation in an attempt to reduce the deviation between the 2 polytopes in as few computations as possible. The facets in the approximation of the noninferior set are obtained by computing the convex hull of the extreme points generated by the algorithm. Suitable tests are developed to determine those facets of the convex hull that belong to the approximation.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier Sequoia S.A</publisher><subject>Algorithms ; Approximation ; Decision making models ; Estimating techniques ; Linear programming ; Multivariate analysis ; Operations research</subject><ispartof>European journal of operational research, 1993-08, Vol.68 (3), p.356</ispartof><rights>Copyright Elsevier Sequoia S.A. Aug 13, 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Solanki, Rajendra S</creatorcontrib><creatorcontrib>Appino, Perry A</creatorcontrib><creatorcontrib>Cohon, Jared L</creatorcontrib><title>Approximating the noninferior set in multiobjective linear programmming problems</title><title>European journal of operational research</title><description>Algorithms are developed for approximating the noninferior set in the objective space for multiobjective linear programming problems with 3 or more objectives. A geometrical measure of error is used in controlling the number of extreme points needed in generating an approximation of desired accuracy. In more specific terms, the error in the approximation is estimated by computing the deviation of a polytope containing the entire noninferior set (the upper bounding polytope) from the lower bounding polytope whose interior is known to be inferior. Extreme points are added to the approximation in an attempt to reduce the deviation between the 2 polytopes in as few computations as possible. The facets in the approximation of the noninferior set are obtained by computing the convex hull of the extreme points generated by the algorithm. Suitable tests are developed to determine those facets of the convex hull that belong to the approximation.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Decision making models</subject><subject>Estimating techniques</subject><subject>Linear programming</subject><subject>Multivariate analysis</subject><subject>Operations research</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNi8kKwjAURYMoWId_CO4LSTqkWxHFpQv3ksprfSVDTVLx843gB7i6HO45M5LxRoq8bmo2JxkrpMyF4HJJViEMjDFe8Sojl_04evdGoyLansYHUOss2g48Ok8DRIqWmklHdO0A94gvoBotKE9T2HtljPmWCVoNJmzIolM6wPa3a7I7Ha-Hc56E5wQh3gY3eZuum2AlF00pePGX9AGifEEn</recordid><startdate>19930813</startdate><enddate>19930813</enddate><creator>Solanki, Rajendra S</creator><creator>Appino, Perry A</creator><creator>Cohon, Jared L</creator><general>Elsevier Sequoia S.A</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930813</creationdate><title>Approximating the noninferior set in multiobjective linear programmming problems</title><author>Solanki, Rajendra S ; Appino, Perry A ; Cohon, Jared L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2041284213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Decision making models</topic><topic>Estimating techniques</topic><topic>Linear programming</topic><topic>Multivariate analysis</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solanki, Rajendra S</creatorcontrib><creatorcontrib>Appino, Perry A</creatorcontrib><creatorcontrib>Cohon, Jared L</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solanki, Rajendra S</au><au>Appino, Perry A</au><au>Cohon, Jared L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the noninferior set in multiobjective linear programmming problems</atitle><jtitle>European journal of operational research</jtitle><date>1993-08-13</date><risdate>1993</risdate><volume>68</volume><issue>3</issue><spage>356</spage><pages>356-</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Algorithms are developed for approximating the noninferior set in the objective space for multiobjective linear programming problems with 3 or more objectives. A geometrical measure of error is used in controlling the number of extreme points needed in generating an approximation of desired accuracy. In more specific terms, the error in the approximation is estimated by computing the deviation of a polytope containing the entire noninferior set (the upper bounding polytope) from the lower bounding polytope whose interior is known to be inferior. Extreme points are added to the approximation in an attempt to reduce the deviation between the 2 polytopes in as few computations as possible. The facets in the approximation of the noninferior set are obtained by computing the convex hull of the extreme points generated by the algorithm. Suitable tests are developed to determine those facets of the convex hull that belong to the approximation.</abstract><cop>Amsterdam</cop><pub>Elsevier Sequoia S.A</pub></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1993-08, Vol.68 (3), p.356
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204128421
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Approximation
Decision making models
Estimating techniques
Linear programming
Multivariate analysis
Operations research
title Approximating the noninferior set in multiobjective linear programmming problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20noninferior%20set%20in%20multiobjective%20linear%20programmming%20problems&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Solanki,%20Rajendra%20S&rft.date=1993-08-13&rft.volume=68&rft.issue=3&rft.spage=356&rft.pages=356-&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/&rft_dat=%3Cproquest%3E1070853%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204128421&rft_id=info:pmid/&rfr_iscdi=true