A finite state Markov model with continuous time parameter for physical and chemical cutting processes

Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1991-11, Vol.55 (2), p.279-290
Hauptverfasser: Saedt, Anton P.H., Homan, Waldemar J., Peter Reinders, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 279
container_title European journal of operational research
container_volume 55
creator Saedt, Anton P.H.
Homan, Waldemar J.
Peter Reinders, M.
description Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains at the start of the process and from a given cutting or transition intensity during the process, the model gives the length distribution on each moment during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.
doi_str_mv 10.1016/0377-2217(91)90232-K
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204127963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>037722179190232K</els_id><sourcerecordid>1070352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</originalsourceid><addsrcrecordid>eNp9kE9vEzEQxS0EEqHwDThYiAMcFvxnba8vSFVVaGkRFzhbjj0mDtn1YnuD8u1xmipHLM2MLL33ZvRD6DUlHyih8iPhSnWMUfVO0_eaMM66uydoRQfFOjlI8hStzpLn6EUpW0IIFVSsULjEIU6xAi7Vtv7N5t9pj8fkYYf_xrrBLk01TktaCq5xBDzbbEeokHFIGc-bQ4nO7rCdPHYbGB8-bqnN8wvPOTkoBcpL9CzYXYFXj_MC_fx8_ePqprv__uX26vK-cz1TtVNhLcAB10Frqb3gDHrFFXg_BLJmlkvdk3UvPA0Dd5z0hAHVg_LOrx04zS_Qm1Nu2_xngVLNNi15aisNIz1lSkveRP1J5HIqJUMwc46jzQdDiTkCNUda5kjLaGoegJq7Zvt6smWYwZ090N42ZShmb7gVorVDK6qbldvYirWaj1NpwzQxmzq2sLePh9rSiIVsJxfLOVQI2Sspm-zTSQYN2j5CNsVFmBz4mMFV41P8_9H_AKESpBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204127963</pqid></control><display><type>article</type><title>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Saedt, Anton P.H. ; Homan, Waldemar J. ; Peter Reinders, M.</creator><creatorcontrib>Saedt, Anton P.H. ; Homan, Waldemar J. ; Peter Reinders, M.</creatorcontrib><description>Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains at the start of the process and from a given cutting or transition intensity during the process, the model gives the length distribution on each moment during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(91)90232-K</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Control processes ; depolymerisation ; Exact sciences and technology ; fiber cutting processes ; Fibers ; Machinery and processing ; Markov analysis ; Markov processes ; Mathematical models ; Operations research ; Plastics ; Polymer industry, paints, wood ; Polymers ; practice ; Process controls ; Spinning ; Studies ; Technology of polymers</subject><ispartof>European journal of operational research, 1991-11, Vol.55 (2), p.279-290</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 25, 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</citedby><cites>FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(91)90232-K$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5564766$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a55_3ay_3a1991_3ai_3a2_3ap_3a279-290.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Saedt, Anton P.H.</creatorcontrib><creatorcontrib>Homan, Waldemar J.</creatorcontrib><creatorcontrib>Peter Reinders, M.</creatorcontrib><title>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</title><title>European journal of operational research</title><description>Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains at the start of the process and from a given cutting or transition intensity during the process, the model gives the length distribution on each moment during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.</description><subject>Applied sciences</subject><subject>Control processes</subject><subject>depolymerisation</subject><subject>Exact sciences and technology</subject><subject>fiber cutting processes</subject><subject>Fibers</subject><subject>Machinery and processing</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>practice</subject><subject>Process controls</subject><subject>Spinning</subject><subject>Studies</subject><subject>Technology of polymers</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE9vEzEQxS0EEqHwDThYiAMcFvxnba8vSFVVaGkRFzhbjj0mDtn1YnuD8u1xmipHLM2MLL33ZvRD6DUlHyih8iPhSnWMUfVO0_eaMM66uydoRQfFOjlI8hStzpLn6EUpW0IIFVSsULjEIU6xAi7Vtv7N5t9pj8fkYYf_xrrBLk01TktaCq5xBDzbbEeokHFIGc-bQ4nO7rCdPHYbGB8-bqnN8wvPOTkoBcpL9CzYXYFXj_MC_fx8_ePqprv__uX26vK-cz1TtVNhLcAB10Frqb3gDHrFFXg_BLJmlkvdk3UvPA0Dd5z0hAHVg_LOrx04zS_Qm1Nu2_xngVLNNi15aisNIz1lSkveRP1J5HIqJUMwc46jzQdDiTkCNUda5kjLaGoegJq7Zvt6smWYwZ090N42ZShmb7gVorVDK6qbldvYirWaj1NpwzQxmzq2sLePh9rSiIVsJxfLOVQI2Sspm-zTSQYN2j5CNsVFmBz4mMFV41P8_9H_AKESpBo</recordid><startdate>19911125</startdate><enddate>19911125</enddate><creator>Saedt, Anton P.H.</creator><creator>Homan, Waldemar J.</creator><creator>Peter Reinders, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19911125</creationdate><title>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</title><author>Saedt, Anton P.H. ; Homan, Waldemar J. ; Peter Reinders, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Control processes</topic><topic>depolymerisation</topic><topic>Exact sciences and technology</topic><topic>fiber cutting processes</topic><topic>Fibers</topic><topic>Machinery and processing</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>practice</topic><topic>Process controls</topic><topic>Spinning</topic><topic>Studies</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saedt, Anton P.H.</creatorcontrib><creatorcontrib>Homan, Waldemar J.</creatorcontrib><creatorcontrib>Peter Reinders, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saedt, Anton P.H.</au><au>Homan, Waldemar J.</au><au>Peter Reinders, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</atitle><jtitle>European journal of operational research</jtitle><date>1991-11-25</date><risdate>1991</risdate><volume>55</volume><issue>2</issue><spage>279</spage><epage>290</epage><pages>279-290</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains at the start of the process and from a given cutting or transition intensity during the process, the model gives the length distribution on each moment during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(91)90232-K</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1991-11, Vol.55 (2), p.279-290
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204127963
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Control processes
depolymerisation
Exact sciences and technology
fiber cutting processes
Fibers
Machinery and processing
Markov analysis
Markov processes
Mathematical models
Operations research
Plastics
Polymer industry, paints, wood
Polymers
practice
Process controls
Spinning
Studies
Technology of polymers
title A finite state Markov model with continuous time parameter for physical and chemical cutting processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20state%20Markov%20model%20with%20continuous%20time%20parameter%20for%20physical%20and%20chemical%20cutting%20processes&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Saedt,%20Anton%20P.H.&rft.date=1991-11-25&rft.volume=55&rft.issue=2&rft.spage=279&rft.epage=290&rft.pages=279-290&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(91)90232-K&rft_dat=%3Cproquest_cross%3E1070352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204127963&rft_id=info:pmid/&rft_els_id=037722179190232K&rfr_iscdi=true