A finite state Markov model with continuous time parameter for physical and chemical cutting processes
Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smal...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1991-11, Vol.55 (2), p.279-290 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 2 |
container_start_page | 279 |
container_title | European journal of operational research |
container_volume | 55 |
creator | Saedt, Anton P.H. Homan, Waldemar J. Peter Reinders, M. |
description | Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains
at the start of the process and from a given cutting or transition intensity
during the process, the model gives the length distribution on each moment
during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains. |
doi_str_mv | 10.1016/0377-2217(91)90232-K |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204127963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>037722179190232K</els_id><sourcerecordid>1070352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</originalsourceid><addsrcrecordid>eNp9kE9vEzEQxS0EEqHwDThYiAMcFvxnba8vSFVVaGkRFzhbjj0mDtn1YnuD8u1xmipHLM2MLL33ZvRD6DUlHyih8iPhSnWMUfVO0_eaMM66uydoRQfFOjlI8hStzpLn6EUpW0IIFVSsULjEIU6xAi7Vtv7N5t9pj8fkYYf_xrrBLk01TktaCq5xBDzbbEeokHFIGc-bQ4nO7rCdPHYbGB8-bqnN8wvPOTkoBcpL9CzYXYFXj_MC_fx8_ePqprv__uX26vK-cz1TtVNhLcAB10Frqb3gDHrFFXg_BLJmlkvdk3UvPA0Dd5z0hAHVg_LOrx04zS_Qm1Nu2_xngVLNNi15aisNIz1lSkveRP1J5HIqJUMwc46jzQdDiTkCNUda5kjLaGoegJq7Zvt6smWYwZ090N42ZShmb7gVorVDK6qbldvYirWaj1NpwzQxmzq2sLePh9rSiIVsJxfLOVQI2Sspm-zTSQYN2j5CNsVFmBz4mMFV41P8_9H_AKESpBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204127963</pqid></control><display><type>article</type><title>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Saedt, Anton P.H. ; Homan, Waldemar J. ; Peter Reinders, M.</creator><creatorcontrib>Saedt, Anton P.H. ; Homan, Waldemar J. ; Peter Reinders, M.</creatorcontrib><description>Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains
at the start of the process and from a given cutting or transition intensity
during the process, the model gives the length distribution on each moment
during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(91)90232-K</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Control processes ; depolymerisation ; Exact sciences and technology ; fiber cutting processes ; Fibers ; Machinery and processing ; Markov analysis ; Markov processes ; Mathematical models ; Operations research ; Plastics ; Polymer industry, paints, wood ; Polymers ; practice ; Process controls ; Spinning ; Studies ; Technology of polymers</subject><ispartof>European journal of operational research, 1991-11, Vol.55 (2), p.279-290</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 25, 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</citedby><cites>FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(91)90232-K$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5564766$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a55_3ay_3a1991_3ai_3a2_3ap_3a279-290.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Saedt, Anton P.H.</creatorcontrib><creatorcontrib>Homan, Waldemar J.</creatorcontrib><creatorcontrib>Peter Reinders, M.</creatorcontrib><title>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</title><title>European journal of operational research</title><description>Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains
at the start of the process and from a given cutting or transition intensity
during the process, the model gives the length distribution on each moment
during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.</description><subject>Applied sciences</subject><subject>Control processes</subject><subject>depolymerisation</subject><subject>Exact sciences and technology</subject><subject>fiber cutting processes</subject><subject>Fibers</subject><subject>Machinery and processing</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>practice</subject><subject>Process controls</subject><subject>Spinning</subject><subject>Studies</subject><subject>Technology of polymers</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE9vEzEQxS0EEqHwDThYiAMcFvxnba8vSFVVaGkRFzhbjj0mDtn1YnuD8u1xmipHLM2MLL33ZvRD6DUlHyih8iPhSnWMUfVO0_eaMM66uydoRQfFOjlI8hStzpLn6EUpW0IIFVSsULjEIU6xAi7Vtv7N5t9pj8fkYYf_xrrBLk01TktaCq5xBDzbbEeokHFIGc-bQ4nO7rCdPHYbGB8-bqnN8wvPOTkoBcpL9CzYXYFXj_MC_fx8_ePqprv__uX26vK-cz1TtVNhLcAB10Frqb3gDHrFFXg_BLJmlkvdk3UvPA0Dd5z0hAHVg_LOrx04zS_Qm1Nu2_xngVLNNi15aisNIz1lSkveRP1J5HIqJUMwc46jzQdDiTkCNUda5kjLaGoegJq7Zvt6smWYwZ090N42ZShmb7gVorVDK6qbldvYirWaj1NpwzQxmzq2sLePh9rSiIVsJxfLOVQI2Sspm-zTSQYN2j5CNsVFmBz4mMFV41P8_9H_AKESpBo</recordid><startdate>19911125</startdate><enddate>19911125</enddate><creator>Saedt, Anton P.H.</creator><creator>Homan, Waldemar J.</creator><creator>Peter Reinders, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19911125</creationdate><title>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</title><author>Saedt, Anton P.H. ; Homan, Waldemar J. ; Peter Reinders, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7fb5ece39f9969d532e4737edd8f0b2a36940b45d1f83c30402e1987dcdbcec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Control processes</topic><topic>depolymerisation</topic><topic>Exact sciences and technology</topic><topic>fiber cutting processes</topic><topic>Fibers</topic><topic>Machinery and processing</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>practice</topic><topic>Process controls</topic><topic>Spinning</topic><topic>Studies</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saedt, Anton P.H.</creatorcontrib><creatorcontrib>Homan, Waldemar J.</creatorcontrib><creatorcontrib>Peter Reinders, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saedt, Anton P.H.</au><au>Homan, Waldemar J.</au><au>Peter Reinders, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite state Markov model with continuous time parameter for physical and chemical cutting processes</atitle><jtitle>European journal of operational research</jtitle><date>1991-11-25</date><risdate>1991</risdate><volume>55</volume><issue>2</issue><spage>279</spage><epage>290</epage><pages>279-290</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>Several processes in physics and chemistry are one-dimensional cutting processes. Grinding of fibers in a grinding mill as well as depolymerisation of polymers in an enzymatic solution are examples of these processes. One-dimensional chains of connected identical “atomic particles” are cut into smaller chains until only the, indivisible, atomic particles remain: the indivisible smallest fiber particles in the grinder and the monomers in the enzymatic solution. A mathematical model has been developed for controlling and optimizing these processes. It is characterized as a finite state Markov process with continuous time parameter. From a given distribution of the length of the chains
at the start of the process and from a given cutting or transition intensity
during the process, the model gives the length distribution on each moment
during the process. The cutting intensity may vary during the process and can be dependent on the length of the chain or on the cutting location within the chain at the start or during the process. The model can be used for control systems in the process industry. For instance, it is possible to forecast the moment of achieving a desired length distribution of the chains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(91)90232-K</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1991-11, Vol.55 (2), p.279-290 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_204127963 |
source | RePEc; ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Control processes depolymerisation Exact sciences and technology fiber cutting processes Fibers Machinery and processing Markov analysis Markov processes Mathematical models Operations research Plastics Polymer industry, paints, wood Polymers practice Process controls Spinning Studies Technology of polymers |
title | A finite state Markov model with continuous time parameter for physical and chemical cutting processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20state%20Markov%20model%20with%20continuous%20time%20parameter%20for%20physical%20and%20chemical%20cutting%20processes&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Saedt,%20Anton%20P.H.&rft.date=1991-11-25&rft.volume=55&rft.issue=2&rft.spage=279&rft.epage=290&rft.pages=279-290&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(91)90232-K&rft_dat=%3Cproquest_cross%3E1070352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204127963&rft_id=info:pmid/&rft_els_id=037722179190232K&rfr_iscdi=true |