Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis

We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore–protein interactions. Cph1Δ2, the 514‐residue N‐terminal sensor module produced as a recombinant His6‐tagged apoprotein in Escherichia coli, autoassembles in vitro to form a h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2006-04, Vol.273 (7), p.1415-1429
Hauptverfasser: Hahn, Janina, Strauss, Holger M., Landgraf, Frank T., Gimenèz, Hortensia Faus, Lochnit, Günter, Schmieder, Peter, Hughes, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1429
container_issue 7
container_start_page 1415
container_title The FEBS journal
container_volume 273
creator Hahn, Janina
Strauss, Holger M.
Landgraf, Frank T.
Gimenèz, Hortensia Faus
Lochnit, Günter
Schmieder, Peter
Hughes, Jon
description We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore–protein interactions. Cph1Δ2, the 514‐residue N‐terminal sensor module produced as a recombinant His6‐tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full‐length product. We generated 12 site‐directed mutants of Cph1Δ2, focusing on conserved residues which might be involved in chromophore–protein autoassembly and photoconversion. Folding, phycocyanobilin‐binding and Pr→Pfr photoconversion were analysed using CD and UV–visible spectroscopy. MALDI‐TOF‐MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red‐shifted photochromic holoprotein. H260Q shows UV–visible properties similar to the wild‐type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore–protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild‐type, a Pfr‐like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV‐Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re‐uptake) during Pr→Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment [Wagner JR, Brunzelle JS, Forest KT & Vierstra RD (2005) Nature438, 325–331].
doi_str_mv 10.1111/j.1742-4658.2006.05164.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204120872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038032641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5654-d01bdd3bf902fd99224076433c6dfa20147cb0d1b216497b9ec1fa628f34a523</originalsourceid><addsrcrecordid>eNqNkdFOgzAUhhujcTp9BUO8B9tSCr0x0WVTkxlN3IV3DYUyIINiC3Hc-Q6-oU9i2ZZ56XrT0_Q7f0__HwAHQQ_ZdVN6KCTYJTSIPAwh9WCAKPHWR-Bsf3G8r8n7CJwbU0LoB4SxUzBClEaMYXYGnl-1EkW9dBqtWlnUP1_fSa5VpZpcaekUdSt1nLSFqo09OJMmR06T963aUNIRvVN1bbyUtTSFuQAnWbwy8nK3j8FiNl1MHt35y8PT5G7uJgENiJtCJNLUFxmDOEvtIJjAkBLfT2iaxRgiEiYCpkhg-ysWCiYTlMUUR5lP4gD7Y3C9lbVDf3TStLxUna7tixxDgjCMwgMgivz_IISssRaKtlCilTFaZrzRRRXrniPIhzx4yQer-WA7H_Lgmzz42rZe7fQ7Ucn0r3EXgAVut8BnsZL9wcJ8Nr1_G0r_F75NmQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204111051</pqid></control><display><type>article</type><title>Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Hahn, Janina ; Strauss, Holger M. ; Landgraf, Frank T. ; Gimenèz, Hortensia Faus ; Lochnit, Günter ; Schmieder, Peter ; Hughes, Jon</creator><creatorcontrib>Hahn, Janina ; Strauss, Holger M. ; Landgraf, Frank T. ; Gimenèz, Hortensia Faus ; Lochnit, Günter ; Schmieder, Peter ; Hughes, Jon</creatorcontrib><description>We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore–protein interactions. Cph1Δ2, the 514‐residue N‐terminal sensor module produced as a recombinant His6‐tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full‐length product. We generated 12 site‐directed mutants of Cph1Δ2, focusing on conserved residues which might be involved in chromophore–protein autoassembly and photoconversion. Folding, phycocyanobilin‐binding and Pr→Pfr photoconversion were analysed using CD and UV–visible spectroscopy. MALDI‐TOF‐MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red‐shifted photochromic holoprotein. H260Q shows UV–visible properties similar to the wild‐type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore–protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild‐type, a Pfr‐like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV‐Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re‐uptake) during Pr→Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment [Wagner JR, Brunzelle JS, Forest KT &amp; Vierstra RD (2005) Nature438, 325–331].</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2006.05164.x</identifier><identifier>PMID: 16689929</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Apoproteins - chemistry ; Apoproteins - genetics ; Apoproteins - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; biliprotein ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; photoreceptor ; phytochrome ; Phytochrome - chemistry ; Phytochrome - genetics ; Phytochrome - metabolism ; Protein Conformation ; Protein Folding ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; site directed mutagenesis ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; structure–function studies ; Synechocystis - metabolism</subject><ispartof>The FEBS journal, 2006-04, Vol.273 (7), p.1415-1429</ispartof><rights>2006 The Authors Journal compilation 2006 FEBS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5654-d01bdd3bf902fd99224076433c6dfa20147cb0d1b216497b9ec1fa628f34a523</citedby><cites>FETCH-LOGICAL-c5654-d01bdd3bf902fd99224076433c6dfa20147cb0d1b216497b9ec1fa628f34a523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2006.05164.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2006.05164.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16689929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hahn, Janina</creatorcontrib><creatorcontrib>Strauss, Holger M.</creatorcontrib><creatorcontrib>Landgraf, Frank T.</creatorcontrib><creatorcontrib>Gimenèz, Hortensia Faus</creatorcontrib><creatorcontrib>Lochnit, Günter</creatorcontrib><creatorcontrib>Schmieder, Peter</creatorcontrib><creatorcontrib>Hughes, Jon</creatorcontrib><title>Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore–protein interactions. Cph1Δ2, the 514‐residue N‐terminal sensor module produced as a recombinant His6‐tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full‐length product. We generated 12 site‐directed mutants of Cph1Δ2, focusing on conserved residues which might be involved in chromophore–protein autoassembly and photoconversion. Folding, phycocyanobilin‐binding and Pr→Pfr photoconversion were analysed using CD and UV–visible spectroscopy. MALDI‐TOF‐MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red‐shifted photochromic holoprotein. H260Q shows UV–visible properties similar to the wild‐type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore–protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild‐type, a Pfr‐like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV‐Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re‐uptake) during Pr→Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment [Wagner JR, Brunzelle JS, Forest KT &amp; Vierstra RD (2005) Nature438, 325–331].</description><subject>Apoproteins - chemistry</subject><subject>Apoproteins - genetics</subject><subject>Apoproteins - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>biliprotein</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>photoreceptor</subject><subject>phytochrome</subject><subject>Phytochrome - chemistry</subject><subject>Phytochrome - genetics</subject><subject>Phytochrome - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>site directed mutagenesis</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>structure–function studies</subject><subject>Synechocystis - metabolism</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFOgzAUhhujcTp9BUO8B9tSCr0x0WVTkxlN3IV3DYUyIINiC3Hc-Q6-oU9i2ZZ56XrT0_Q7f0__HwAHQQ_ZdVN6KCTYJTSIPAwh9WCAKPHWR-Bsf3G8r8n7CJwbU0LoB4SxUzBClEaMYXYGnl-1EkW9dBqtWlnUP1_fSa5VpZpcaekUdSt1nLSFqo09OJMmR06T963aUNIRvVN1bbyUtTSFuQAnWbwy8nK3j8FiNl1MHt35y8PT5G7uJgENiJtCJNLUFxmDOEvtIJjAkBLfT2iaxRgiEiYCpkhg-ysWCiYTlMUUR5lP4gD7Y3C9lbVDf3TStLxUna7tixxDgjCMwgMgivz_IISssRaKtlCilTFaZrzRRRXrniPIhzx4yQer-WA7H_Lgmzz42rZe7fQ7Ucn0r3EXgAVut8BnsZL9wcJ8Nr1_G0r_F75NmQc</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Hahn, Janina</creator><creator>Strauss, Holger M.</creator><creator>Landgraf, Frank T.</creator><creator>Gimenèz, Hortensia Faus</creator><creator>Lochnit, Günter</creator><creator>Schmieder, Peter</creator><creator>Hughes, Jon</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200604</creationdate><title>Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis</title><author>Hahn, Janina ; Strauss, Holger M. ; Landgraf, Frank T. ; Gimenèz, Hortensia Faus ; Lochnit, Günter ; Schmieder, Peter ; Hughes, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5654-d01bdd3bf902fd99224076433c6dfa20147cb0d1b216497b9ec1fa628f34a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Apoproteins - chemistry</topic><topic>Apoproteins - genetics</topic><topic>Apoproteins - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>biliprotein</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>photoreceptor</topic><topic>phytochrome</topic><topic>Phytochrome - chemistry</topic><topic>Phytochrome - genetics</topic><topic>Phytochrome - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>site directed mutagenesis</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>structure–function studies</topic><topic>Synechocystis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahn, Janina</creatorcontrib><creatorcontrib>Strauss, Holger M.</creatorcontrib><creatorcontrib>Landgraf, Frank T.</creatorcontrib><creatorcontrib>Gimenèz, Hortensia Faus</creatorcontrib><creatorcontrib>Lochnit, Günter</creatorcontrib><creatorcontrib>Schmieder, Peter</creatorcontrib><creatorcontrib>Hughes, Jon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hahn, Janina</au><au>Strauss, Holger M.</au><au>Landgraf, Frank T.</au><au>Gimenèz, Hortensia Faus</au><au>Lochnit, Günter</au><au>Schmieder, Peter</au><au>Hughes, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2006-04</date><risdate>2006</risdate><volume>273</volume><issue>7</issue><spage>1415</spage><epage>1429</epage><pages>1415-1429</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore–protein interactions. Cph1Δ2, the 514‐residue N‐terminal sensor module produced as a recombinant His6‐tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full‐length product. We generated 12 site‐directed mutants of Cph1Δ2, focusing on conserved residues which might be involved in chromophore–protein autoassembly and photoconversion. Folding, phycocyanobilin‐binding and Pr→Pfr photoconversion were analysed using CD and UV–visible spectroscopy. MALDI‐TOF‐MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red‐shifted photochromic holoprotein. H260Q shows UV–visible properties similar to the wild‐type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore–protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild‐type, a Pfr‐like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV‐Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re‐uptake) during Pr→Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment [Wagner JR, Brunzelle JS, Forest KT &amp; Vierstra RD (2005) Nature438, 325–331].</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16689929</pmid><doi>10.1111/j.1742-4658.2006.05164.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2006-04, Vol.273 (7), p.1415-1429
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_journals_204120872
source Wiley Online Library - AutoHoldings Journals; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Free Content; Free Full-Text Journals in Chemistry
subjects Apoproteins - chemistry
Apoproteins - genetics
Apoproteins - metabolism
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
biliprotein
Mutagenesis
Mutagenesis, Site-Directed
Mutation
photoreceptor
phytochrome
Phytochrome - chemistry
Phytochrome - genetics
Phytochrome - metabolism
Protein Conformation
Protein Folding
Protein Kinases - chemistry
Protein Kinases - genetics
Protein Kinases - metabolism
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
site directed mutagenesis
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
structure–function studies
Synechocystis - metabolism
title Probing protein–chromophore interactions in Cph1 phytochrome by mutagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20protein%E2%80%93chromophore%20interactions%20in%20Cph1%20phytochrome%20by%20mutagenesis&rft.jtitle=The%20FEBS%20journal&rft.au=Hahn,%20Janina&rft.date=2006-04&rft.volume=273&rft.issue=7&rft.spage=1415&rft.epage=1429&rft.pages=1415-1429&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2006.05164.x&rft_dat=%3Cproquest_cross%3E1038032641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204111051&rft_id=info:pmid/16689929&rfr_iscdi=true