Fractional programming: Applications and algorithms

The paper deals with decision problems that give rise to the optimization of ratios subject to constraints. These so called fractional programs have been treated in a considerable number of papers. It is attempted to survey applications as well as solution methods in linear, quadratic and concave-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1981-01, Vol.7 (2), p.111-120
1. Verfasser: Schaible, Siegfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 2
container_start_page 111
container_title European journal of operational research
container_volume 7
creator Schaible, Siegfried
description The paper deals with decision problems that give rise to the optimization of ratios subject to constraints. These so called fractional programs have been treated in a considerable number of papers. It is attempted to survey applications as well as solution methods in linear, quadratic and concave-convex fractional programming. In the first part we give a detailed outline on the major areas of applications of fractional programming. Following a brief review on some basic theoretical results like duality relations, in the second part we then discuss different algorithmic approaches. A primal, a dual and a parametric solution method is considered here. We try to determine for each method the kind of fractional programs that are solved by it suitably.
doi_str_mv 10.1016/0377-2217(81)90272-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_204113811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221781902721</els_id><sourcerecordid>7075428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-2794f62a06b66bfb6a8cd65c59f46d2bd469fa18be06fa1a296b7ade09b40abb3</originalsourceid><addsrcrecordid>eNp9UNFKwzAUDaLgnP6BD8Unfajmpm3a-CCM4XQw8EWfw02abhntWpNusL83tbJHLxxuyL3ncO4h5BboI1DgTzTJ85gxyO8LeBCU5SyGMzKBIjx4wek5mZxWLsmV91tKKWSQTUiycKh72-6wjjrXrh02jd2tn6NZ19VW4zDyEe7KCOt162y_afw1uaiw9ubmr0_J1-L1c_4erz7elvPZKtaJyPuY5SKtOEPKFeeqUhwLXfJMZ6JKeclUmXJRIRTKUB46MsFVjqWhQqUUlUqm5G7UDca-98b3ctvuXXDqJaMpQFIETEk6LmnXeu9MJTtnG3RHCVQO6cjhdDmcLguQv-nIgbYcac50Rp84JtS2dcbLg0wwDzgGgAjMBG0AC-iGLwAJjMpN3wStl1HLhDAO1jjptTU7bUrrjO5l2dr_zfwA0WmEZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204113811</pqid></control><display><type>article</type><title>Fractional programming: Applications and algorithms</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Schaible, Siegfried</creator><creatorcontrib>Schaible, Siegfried</creatorcontrib><description>The paper deals with decision problems that give rise to the optimization of ratios subject to constraints. These so called fractional programs have been treated in a considerable number of papers. It is attempted to survey applications as well as solution methods in linear, quadratic and concave-convex fractional programming. In the first part we give a detailed outline on the major areas of applications of fractional programming. Following a brief review on some basic theoretical results like duality relations, in the second part we then discuss different algorithmic approaches. A primal, a dual and a parametric solution method is considered here. We try to determine for each method the kind of fractional programs that are solved by it suitably.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(81)90272-1</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applications ; Fractional ; Linear programming ; Operations ; Optimization ; Ratios</subject><ispartof>European journal of operational research, 1981-01, Vol.7 (2), p.111-120</ispartof><rights>1981</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-2794f62a06b66bfb6a8cd65c59f46d2bd469fa18be06fa1a296b7ade09b40abb3</citedby><cites>FETCH-LOGICAL-c397t-2794f62a06b66bfb6a8cd65c59f46d2bd469fa18be06fa1a296b7ade09b40abb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(81)90272-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4009,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a7_3ay_3a1981_3ai_3a2_3ap_3a111-120.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaible, Siegfried</creatorcontrib><title>Fractional programming: Applications and algorithms</title><title>European journal of operational research</title><description>The paper deals with decision problems that give rise to the optimization of ratios subject to constraints. These so called fractional programs have been treated in a considerable number of papers. It is attempted to survey applications as well as solution methods in linear, quadratic and concave-convex fractional programming. In the first part we give a detailed outline on the major areas of applications of fractional programming. Following a brief review on some basic theoretical results like duality relations, in the second part we then discuss different algorithmic approaches. A primal, a dual and a parametric solution method is considered here. We try to determine for each method the kind of fractional programs that are solved by it suitably.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Fractional</subject><subject>Linear programming</subject><subject>Operations</subject><subject>Optimization</subject><subject>Ratios</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UNFKwzAUDaLgnP6BD8Unfajmpm3a-CCM4XQw8EWfw02abhntWpNusL83tbJHLxxuyL3ncO4h5BboI1DgTzTJ85gxyO8LeBCU5SyGMzKBIjx4wek5mZxWLsmV91tKKWSQTUiycKh72-6wjjrXrh02jd2tn6NZ19VW4zDyEe7KCOt162y_afw1uaiw9ubmr0_J1-L1c_4erz7elvPZKtaJyPuY5SKtOEPKFeeqUhwLXfJMZ6JKeclUmXJRIRTKUB46MsFVjqWhQqUUlUqm5G7UDca-98b3ctvuXXDqJaMpQFIETEk6LmnXeu9MJTtnG3RHCVQO6cjhdDmcLguQv-nIgbYcac50Rp84JtS2dcbLg0wwDzgGgAjMBG0AC-iGLwAJjMpN3wStl1HLhDAO1jjptTU7bUrrjO5l2dr_zfwA0WmEZA</recordid><startdate>19810101</startdate><enddate>19810101</enddate><creator>Schaible, Siegfried</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19810101</creationdate><title>Fractional programming: Applications and algorithms</title><author>Schaible, Siegfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-2794f62a06b66bfb6a8cd65c59f46d2bd469fa18be06fa1a296b7ade09b40abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Fractional</topic><topic>Linear programming</topic><topic>Operations</topic><topic>Optimization</topic><topic>Ratios</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaible, Siegfried</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaible, Siegfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional programming: Applications and algorithms</atitle><jtitle>European journal of operational research</jtitle><date>1981-01-01</date><risdate>1981</risdate><volume>7</volume><issue>2</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>The paper deals with decision problems that give rise to the optimization of ratios subject to constraints. These so called fractional programs have been treated in a considerable number of papers. It is attempted to survey applications as well as solution methods in linear, quadratic and concave-convex fractional programming. In the first part we give a detailed outline on the major areas of applications of fractional programming. Following a brief review on some basic theoretical results like duality relations, in the second part we then discuss different algorithmic approaches. A primal, a dual and a parametric solution method is considered here. We try to determine for each method the kind of fractional programs that are solved by it suitably.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(81)90272-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1981-01, Vol.7 (2), p.111-120
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_204113811
source RePEc; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applications
Fractional
Linear programming
Operations
Optimization
Ratios
title Fractional programming: Applications and algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20programming:%20Applications%20and%20algorithms&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Schaible,%20Siegfried&rft.date=1981-01-01&rft.volume=7&rft.issue=2&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(81)90272-1&rft_dat=%3Cproquest_cross%3E7075428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204113811&rft_id=info:pmid/&rft_els_id=0377221781902721&rfr_iscdi=true