Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods

•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2018-05, Vol.57, p.206-225
Hauptverfasser: Petrovic, Andrija, Svorcan, Jelena, Pejcev, Aleksandar, Radenkovic, Darko, Petrovic, Aleksandar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue
container_start_page 206
container_title Applied Mathematical Modelling
container_volume 57
creator Petrovic, Andrija
Svorcan, Jelena
Pejcev, Aleksandar
Radenkovic, Darko
Petrovic, Aleksandar
description •A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.
doi_str_mv 10.1016/j.apm.2018.01.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041137917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18300283</els_id><sourcerecordid>2041137917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</originalsourceid><addsrcrecordid>eNp9kEFrFEEQhYegkBj9Ad4avDpr1XTSPYMnWTQRArkoeGtqu2u0l53psbt3cfMH_NtW2Bw8BQq6-vG-4vGa5i3CCgHNh-2KlmnVAfYrQBlz1lyABtsOcPXjxX_7efOqlC0AXMvvovm7TtNCOZY0qzSqOR14pw4i0GbHijKT8mk-cP7Jc21DfNrE-PAghoXzmPJEs-ei0qZSnDmozVHRTLtjjf694NOyr1RjEkn0oPiPYHGSMyJMXH-lUF43L0faFX7z9F423798_ra-be_ub76uP921Xpu-tgP3HoPpzPWo2Wu0pHsLlgY0Br0Zg-3sQKADkhmth7E3_aA10MAwdB71ZfPudHfJ6feeS3XbtM-SrLgOrhC1HdCKC08un1MpmUe3SGDKR4fgHvt2Wyd9u8e-HaCMEebjiWGJf4icXfGRpZgQM_vqQorP0P8A-tSLfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041137917</pqid></control><display><type>article</type><title>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Education Source</source><creator>Petrovic, Andrija ; Svorcan, Jelena ; Pejcev, Aleksandar ; Radenkovic, Darko ; Petrovic, Aleksandar</creator><creatorcontrib>Petrovic, Andrija ; Svorcan, Jelena ; Pejcev, Aleksandar ; Radenkovic, Darko ; Petrovic, Aleksandar</creatorcontrib><description>•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.01.016</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Comparative analysis ; Computational fluid dynamics ; Convergent-divergent nozzle ; Convergent-divergent nozzles ; Dimensional analysis ; Ejection ; Ejector ; Entrainment ; Experimental methods ; Experimental study ; Mass flow ; Mathematical analysis ; Mathematical models ; Nozzles ; Numerical modeling ; Shock waves ; Variable area nozzle ; Velocity</subject><ispartof>Applied Mathematical Modelling, 2018-05, Vol.57, p.206-225</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</citedby><cites>FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2018.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Petrovic, Andrija</creatorcontrib><creatorcontrib>Svorcan, Jelena</creatorcontrib><creatorcontrib>Pejcev, Aleksandar</creatorcontrib><creatorcontrib>Radenkovic, Darko</creatorcontrib><creatorcontrib>Petrovic, Aleksandar</creatorcontrib><title>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</title><title>Applied Mathematical Modelling</title><description>•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.</description><subject>Comparative analysis</subject><subject>Computational fluid dynamics</subject><subject>Convergent-divergent nozzle</subject><subject>Convergent-divergent nozzles</subject><subject>Dimensional analysis</subject><subject>Ejection</subject><subject>Ejector</subject><subject>Entrainment</subject><subject>Experimental methods</subject><subject>Experimental study</subject><subject>Mass flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>Numerical modeling</subject><subject>Shock waves</subject><subject>Variable area nozzle</subject><subject>Velocity</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrFEEQhYegkBj9Ad4avDpr1XTSPYMnWTQRArkoeGtqu2u0l53psbt3cfMH_NtW2Bw8BQq6-vG-4vGa5i3CCgHNh-2KlmnVAfYrQBlz1lyABtsOcPXjxX_7efOqlC0AXMvvovm7TtNCOZY0qzSqOR14pw4i0GbHijKT8mk-cP7Jc21DfNrE-PAghoXzmPJEs-ei0qZSnDmozVHRTLtjjf694NOyr1RjEkn0oPiPYHGSMyJMXH-lUF43L0faFX7z9F423798_ra-be_ub76uP921Xpu-tgP3HoPpzPWo2Wu0pHsLlgY0Br0Zg-3sQKADkhmth7E3_aA10MAwdB71ZfPudHfJ6feeS3XbtM-SrLgOrhC1HdCKC08un1MpmUe3SGDKR4fgHvt2Wyd9u8e-HaCMEebjiWGJf4icXfGRpZgQM_vqQorP0P8A-tSLfg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Petrovic, Andrija</creator><creator>Svorcan, Jelena</creator><creator>Pejcev, Aleksandar</creator><creator>Radenkovic, Darko</creator><creator>Petrovic, Aleksandar</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</title><author>Petrovic, Andrija ; Svorcan, Jelena ; Pejcev, Aleksandar ; Radenkovic, Darko ; Petrovic, Aleksandar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative analysis</topic><topic>Computational fluid dynamics</topic><topic>Convergent-divergent nozzle</topic><topic>Convergent-divergent nozzles</topic><topic>Dimensional analysis</topic><topic>Ejection</topic><topic>Ejector</topic><topic>Entrainment</topic><topic>Experimental methods</topic><topic>Experimental study</topic><topic>Mass flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>Numerical modeling</topic><topic>Shock waves</topic><topic>Variable area nozzle</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, Andrija</creatorcontrib><creatorcontrib>Svorcan, Jelena</creatorcontrib><creatorcontrib>Pejcev, Aleksandar</creatorcontrib><creatorcontrib>Radenkovic, Darko</creatorcontrib><creatorcontrib>Petrovic, Aleksandar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, Andrija</au><au>Svorcan, Jelena</au><au>Pejcev, Aleksandar</au><au>Radenkovic, Darko</au><au>Petrovic, Aleksandar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-05</date><risdate>2018</risdate><volume>57</volume><spage>206</spage><epage>225</epage><pages>206-225</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.01.016</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2018-05, Vol.57, p.206-225
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2041137917
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Education Source
subjects Comparative analysis
Computational fluid dynamics
Convergent-divergent nozzle
Convergent-divergent nozzles
Dimensional analysis
Ejection
Ejector
Entrainment
Experimental methods
Experimental study
Mass flow
Mathematical analysis
Mathematical models
Nozzles
Numerical modeling
Shock waves
Variable area nozzle
Velocity
title Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20novel%20variable%20area%20convergent-divergent%20nozzle%20performances%20obtained%20by%20analytic,%20computational%20and%20experimental%20methods&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Petrovic,%20Andrija&rft.date=2018-05&rft.volume=57&rft.spage=206&rft.epage=225&rft.pages=206-225&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.01.016&rft_dat=%3Cproquest_cross%3E2041137917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041137917&rft_id=info:pmid/&rft_els_id=S0307904X18300283&rfr_iscdi=true