Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods
•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is i...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2018-05, Vol.57, p.206-225 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | |
container_start_page | 206 |
container_title | Applied Mathematical Modelling |
container_volume | 57 |
creator | Petrovic, Andrija Svorcan, Jelena Pejcev, Aleksandar Radenkovic, Darko Petrovic, Aleksandar |
description | •A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position.
Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized. |
doi_str_mv | 10.1016/j.apm.2018.01.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2041137917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18300283</els_id><sourcerecordid>2041137917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</originalsourceid><addsrcrecordid>eNp9kEFrFEEQhYegkBj9Ad4avDpr1XTSPYMnWTQRArkoeGtqu2u0l53psbt3cfMH_NtW2Bw8BQq6-vG-4vGa5i3CCgHNh-2KlmnVAfYrQBlz1lyABtsOcPXjxX_7efOqlC0AXMvvovm7TtNCOZY0qzSqOR14pw4i0GbHijKT8mk-cP7Jc21DfNrE-PAghoXzmPJEs-ei0qZSnDmozVHRTLtjjf694NOyr1RjEkn0oPiPYHGSMyJMXH-lUF43L0faFX7z9F423798_ra-be_ub76uP921Xpu-tgP3HoPpzPWo2Wu0pHsLlgY0Br0Zg-3sQKADkhmth7E3_aA10MAwdB71ZfPudHfJ6feeS3XbtM-SrLgOrhC1HdCKC08un1MpmUe3SGDKR4fgHvt2Wyd9u8e-HaCMEebjiWGJf4icXfGRpZgQM_vqQorP0P8A-tSLfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041137917</pqid></control><display><type>article</type><title>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Education Source</source><creator>Petrovic, Andrija ; Svorcan, Jelena ; Pejcev, Aleksandar ; Radenkovic, Darko ; Petrovic, Aleksandar</creator><creatorcontrib>Petrovic, Andrija ; Svorcan, Jelena ; Pejcev, Aleksandar ; Radenkovic, Darko ; Petrovic, Aleksandar</creatorcontrib><description>•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position.
Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.01.016</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Comparative analysis ; Computational fluid dynamics ; Convergent-divergent nozzle ; Convergent-divergent nozzles ; Dimensional analysis ; Ejection ; Ejector ; Entrainment ; Experimental methods ; Experimental study ; Mass flow ; Mathematical analysis ; Mathematical models ; Nozzles ; Numerical modeling ; Shock waves ; Variable area nozzle ; Velocity</subject><ispartof>Applied Mathematical Modelling, 2018-05, Vol.57, p.206-225</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</citedby><cites>FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2018.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Petrovic, Andrija</creatorcontrib><creatorcontrib>Svorcan, Jelena</creatorcontrib><creatorcontrib>Pejcev, Aleksandar</creatorcontrib><creatorcontrib>Radenkovic, Darko</creatorcontrib><creatorcontrib>Petrovic, Aleksandar</creatorcontrib><title>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</title><title>Applied Mathematical Modelling</title><description>•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position.
Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.</description><subject>Comparative analysis</subject><subject>Computational fluid dynamics</subject><subject>Convergent-divergent nozzle</subject><subject>Convergent-divergent nozzles</subject><subject>Dimensional analysis</subject><subject>Ejection</subject><subject>Ejector</subject><subject>Entrainment</subject><subject>Experimental methods</subject><subject>Experimental study</subject><subject>Mass flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>Numerical modeling</subject><subject>Shock waves</subject><subject>Variable area nozzle</subject><subject>Velocity</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrFEEQhYegkBj9Ad4avDpr1XTSPYMnWTQRArkoeGtqu2u0l53psbt3cfMH_NtW2Bw8BQq6-vG-4vGa5i3CCgHNh-2KlmnVAfYrQBlz1lyABtsOcPXjxX_7efOqlC0AXMvvovm7TtNCOZY0qzSqOR14pw4i0GbHijKT8mk-cP7Jc21DfNrE-PAghoXzmPJEs-ei0qZSnDmozVHRTLtjjf694NOyr1RjEkn0oPiPYHGSMyJMXH-lUF43L0faFX7z9F423798_ra-be_ub76uP921Xpu-tgP3HoPpzPWo2Wu0pHsLlgY0Br0Zg-3sQKADkhmth7E3_aA10MAwdB71ZfPudHfJ6feeS3XbtM-SrLgOrhC1HdCKC08un1MpmUe3SGDKR4fgHvt2Wyd9u8e-HaCMEebjiWGJf4icXfGRpZgQM_vqQorP0P8A-tSLfg</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Petrovic, Andrija</creator><creator>Svorcan, Jelena</creator><creator>Pejcev, Aleksandar</creator><creator>Radenkovic, Darko</creator><creator>Petrovic, Aleksandar</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</title><author>Petrovic, Andrija ; Svorcan, Jelena ; Pejcev, Aleksandar ; Radenkovic, Darko ; Petrovic, Aleksandar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9e8c1d6265f3ec317a38707a91661c6fd7279a03d1a6f7c0f8689330a9e092c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Comparative analysis</topic><topic>Computational fluid dynamics</topic><topic>Convergent-divergent nozzle</topic><topic>Convergent-divergent nozzles</topic><topic>Dimensional analysis</topic><topic>Ejection</topic><topic>Ejector</topic><topic>Entrainment</topic><topic>Experimental methods</topic><topic>Experimental study</topic><topic>Mass flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>Numerical modeling</topic><topic>Shock waves</topic><topic>Variable area nozzle</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, Andrija</creatorcontrib><creatorcontrib>Svorcan, Jelena</creatorcontrib><creatorcontrib>Pejcev, Aleksandar</creatorcontrib><creatorcontrib>Radenkovic, Darko</creatorcontrib><creatorcontrib>Petrovic, Aleksandar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, Andrija</au><au>Svorcan, Jelena</au><au>Pejcev, Aleksandar</au><au>Radenkovic, Darko</au><au>Petrovic, Aleksandar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-05</date><risdate>2018</risdate><volume>57</volume><spage>206</spage><epage>225</epage><pages>206-225</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•A novel model of variable area convergent-divergent nozzle is presented.•Experimental and numerical studies of the supersonic ejector have been conducted.•The flow is visualized for different values of spindle positions and outlet pressures.•The velocity of the primary fluid at the nozzle exit is in accordance with the one dimesional analysis.•The performances are presented through relations between entrainment ratio, outlet pressure and spindle position.
Different applications of a variable area convergent-divergent nozzle are found in various parts of the industry. This paper presents the development of a new design methodology for a variable area convergent-divergent nozzle, to maintain constant nozzle area ratio for different values of mass flow rates. The validation of the presented model was carried out on an example supersonic ejector using experimental, numerical and analytical data. Analytical (one dimensional) and computational fluid dynamics models showed satisfactory prediction performance in comparison with the experiment. The average entrainment ratio error was between 10% and 7%, respectively. Results confirmed that the velocity of the primary fluid at the nozzle outlet is in accordance with the one dimensional analysis. Although disturbances (strong and weak shock waves) are visible, their effects are negligible. Also, supersonic ejector performances are presented through relations between entrainment ratio, outlet pressure and spindle position. Disadvantages of variable area nozzle utilization in ejector applications are emphasized.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.01.016</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2018-05, Vol.57, p.206-225 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2041137917 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Education Source |
subjects | Comparative analysis Computational fluid dynamics Convergent-divergent nozzle Convergent-divergent nozzles Dimensional analysis Ejection Ejector Entrainment Experimental methods Experimental study Mass flow Mathematical analysis Mathematical models Nozzles Numerical modeling Shock waves Variable area nozzle Velocity |
title | Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20novel%20variable%20area%20convergent-divergent%20nozzle%20performances%20obtained%20by%20analytic,%20computational%20and%20experimental%20methods&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Petrovic,%20Andrija&rft.date=2018-05&rft.volume=57&rft.spage=206&rft.epage=225&rft.pages=206-225&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.01.016&rft_dat=%3Cproquest_cross%3E2041137917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041137917&rft_id=info:pmid/&rft_els_id=S0307904X18300283&rfr_iscdi=true |