Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances
A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEE...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2018-04, Vol.8 (4), p.132 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 132 |
container_title | Minerals (Basel) |
container_volume | 8 |
creator | La Vars, Sian Newton, Kelly Quinton, Jamie Cheng, Pei-Yu Wei, Der-Hsin Chan, Yuet-Loy Harmer, Sarah |
description | A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation. |
doi_str_mv | 10.3390/min8040132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2040785615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040785615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOZe_AQB34Rq_jRt-jjGdMLAwRR8K7dpwjLaZiYpbJ_Ar21kgt6Xcx5-51w4CN1S8sB5RR57O0iSE8rZBZowUoqMFvzj8p-_RrMQ9iRdRbkUbIK-tqM3oDRe7HRvFXTJgAcVtbcBonUDdgZvTt5GjZfHgwu6xdHhubKtjTvrGlC268aAjfbeuaNtYQgYhhbPQ3DKQkyB5TGmTp24DjzeuO7Up36Ft2MTIgxKhxt0ZaALevarU_T-tHxbrLL16_PLYr7OgFMZM5qTRlJjKllwyZUmhjaKihaI1IwzULmqBCu1NDkQnpA8F7LIS5LSAijlU3R37j149znqEOu9G_2QXtYsbVdKUVCRqPszpbwLwWtTH7ztwZ9qSuqfreu_rfk3Ht5zbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040785615</pqid></control><display><type>article</type><title>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>La Vars, Sian ; Newton, Kelly ; Quinton, Jamie ; Cheng, Pei-Yu ; Wei, Der-Hsin ; Chan, Yuet-Loy ; Harmer, Sarah</creator><creatorcontrib>La Vars, Sian ; Newton, Kelly ; Quinton, Jamie ; Cheng, Pei-Yu ; Wei, Der-Hsin ; Chan, Yuet-Loy ; Harmer, Sarah</creatorcontrib><description>A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min8040132</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biofilms ; Biopolymers ; Contact angle ; Deoxyribonucleic acid ; DNA ; Electron microscopy ; Exposure ; Extracellular ; Fatty acids ; Fine structure ; Flotation ; Hydrophobicity ; Ions ; Iron ; Lipids ; Mass spectrometry ; Mass spectroscopy ; Oxidation ; Photoelectric emission ; Physicochemical processes ; Physicochemical properties ; Proteins ; Pyrite ; Scanning electron microscopy ; Secondary ion mass spectrometry ; Spectra ; Sulfides ; Sulphides ; Ultrastructure</subject><ispartof>Minerals (Basel), 2018-04, Vol.8 (4), p.132</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</citedby><cites>FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</cites><orcidid>0000-0002-6877-602X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>La Vars, Sian</creatorcontrib><creatorcontrib>Newton, Kelly</creatorcontrib><creatorcontrib>Quinton, Jamie</creatorcontrib><creatorcontrib>Cheng, Pei-Yu</creatorcontrib><creatorcontrib>Wei, Der-Hsin</creatorcontrib><creatorcontrib>Chan, Yuet-Loy</creatorcontrib><creatorcontrib>Harmer, Sarah</creatorcontrib><title>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</title><title>Minerals (Basel)</title><description>A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.</description><subject>Biofilms</subject><subject>Biopolymers</subject><subject>Contact angle</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electron microscopy</subject><subject>Exposure</subject><subject>Extracellular</subject><subject>Fatty acids</subject><subject>Fine structure</subject><subject>Flotation</subject><subject>Hydrophobicity</subject><subject>Ions</subject><subject>Iron</subject><subject>Lipids</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxidation</subject><subject>Photoelectric emission</subject><subject>Physicochemical processes</subject><subject>Physicochemical properties</subject><subject>Proteins</subject><subject>Pyrite</subject><subject>Scanning electron microscopy</subject><subject>Secondary ion mass spectrometry</subject><subject>Spectra</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Ultrastructure</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkF9LwzAUxYMoOOZe_AQB34Rq_jRt-jjGdMLAwRR8K7dpwjLaZiYpbJ_Ar21kgt6Xcx5-51w4CN1S8sB5RR57O0iSE8rZBZowUoqMFvzj8p-_RrMQ9iRdRbkUbIK-tqM3oDRe7HRvFXTJgAcVtbcBonUDdgZvTt5GjZfHgwu6xdHhubKtjTvrGlC268aAjfbeuaNtYQgYhhbPQ3DKQkyB5TGmTp24DjzeuO7Up36Ft2MTIgxKhxt0ZaALevarU_T-tHxbrLL16_PLYr7OgFMZM5qTRlJjKllwyZUmhjaKihaI1IwzULmqBCu1NDkQnpA8F7LIS5LSAijlU3R37j149znqEOu9G_2QXtYsbVdKUVCRqPszpbwLwWtTH7ztwZ9qSuqfreu_rfk3Ht5zbw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>La Vars, Sian</creator><creator>Newton, Kelly</creator><creator>Quinton, Jamie</creator><creator>Cheng, Pei-Yu</creator><creator>Wei, Der-Hsin</creator><creator>Chan, Yuet-Loy</creator><creator>Harmer, Sarah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6877-602X</orcidid></search><sort><creationdate>20180401</creationdate><title>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</title><author>La Vars, Sian ; Newton, Kelly ; Quinton, Jamie ; Cheng, Pei-Yu ; Wei, Der-Hsin ; Chan, Yuet-Loy ; Harmer, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biofilms</topic><topic>Biopolymers</topic><topic>Contact angle</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electron microscopy</topic><topic>Exposure</topic><topic>Extracellular</topic><topic>Fatty acids</topic><topic>Fine structure</topic><topic>Flotation</topic><topic>Hydrophobicity</topic><topic>Ions</topic><topic>Iron</topic><topic>Lipids</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxidation</topic><topic>Photoelectric emission</topic><topic>Physicochemical processes</topic><topic>Physicochemical properties</topic><topic>Proteins</topic><topic>Pyrite</topic><topic>Scanning electron microscopy</topic><topic>Secondary ion mass spectrometry</topic><topic>Spectra</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>La Vars, Sian</creatorcontrib><creatorcontrib>Newton, Kelly</creatorcontrib><creatorcontrib>Quinton, Jamie</creatorcontrib><creatorcontrib>Cheng, Pei-Yu</creatorcontrib><creatorcontrib>Wei, Der-Hsin</creatorcontrib><creatorcontrib>Chan, Yuet-Loy</creatorcontrib><creatorcontrib>Harmer, Sarah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>La Vars, Sian</au><au>Newton, Kelly</au><au>Quinton, Jamie</au><au>Cheng, Pei-Yu</au><au>Wei, Der-Hsin</au><au>Chan, Yuet-Loy</au><au>Harmer, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</atitle><jtitle>Minerals (Basel)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>132</spage><pages>132-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min8040132</doi><orcidid>https://orcid.org/0000-0002-6877-602X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2018-04, Vol.8 (4), p.132 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_proquest_journals_2040785615 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Biofilms Biopolymers Contact angle Deoxyribonucleic acid DNA Electron microscopy Exposure Extracellular Fatty acids Fine structure Flotation Hydrophobicity Ions Iron Lipids Mass spectrometry Mass spectroscopy Oxidation Photoelectric emission Physicochemical processes Physicochemical properties Proteins Pyrite Scanning electron microscopy Secondary ion mass spectrometry Spectra Sulfides Sulphides Ultrastructure |
title | Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Chemical%20Characterisation%20of%20Pyrite%20Exposed%20to%20Acidithiobacillus%20ferrooxidans%20and%20Associated%20Extracellular%20Polymeric%20Substances&rft.jtitle=Minerals%20(Basel)&rft.au=La%20Vars,%20Sian&rft.date=2018-04-01&rft.volume=8&rft.issue=4&rft.spage=132&rft.pages=132-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min8040132&rft_dat=%3Cproquest_cross%3E2040785615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040785615&rft_id=info:pmid/&rfr_iscdi=true |