Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances

A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2018-04, Vol.8 (4), p.132
Hauptverfasser: La Vars, Sian, Newton, Kelly, Quinton, Jamie, Cheng, Pei-Yu, Wei, Der-Hsin, Chan, Yuet-Loy, Harmer, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 132
container_title Minerals (Basel)
container_volume 8
creator La Vars, Sian
Newton, Kelly
Quinton, Jamie
Cheng, Pei-Yu
Wei, Der-Hsin
Chan, Yuet-Loy
Harmer, Sarah
description A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.
doi_str_mv 10.3390/min8040132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2040785615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040785615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOZe_AQB34Rq_jRt-jjGdMLAwRR8K7dpwjLaZiYpbJ_Ar21kgt6Xcx5-51w4CN1S8sB5RR57O0iSE8rZBZowUoqMFvzj8p-_RrMQ9iRdRbkUbIK-tqM3oDRe7HRvFXTJgAcVtbcBonUDdgZvTt5GjZfHgwu6xdHhubKtjTvrGlC268aAjfbeuaNtYQgYhhbPQ3DKQkyB5TGmTp24DjzeuO7Up36Ft2MTIgxKhxt0ZaALevarU_T-tHxbrLL16_PLYr7OgFMZM5qTRlJjKllwyZUmhjaKihaI1IwzULmqBCu1NDkQnpA8F7LIS5LSAijlU3R37j149znqEOu9G_2QXtYsbVdKUVCRqPszpbwLwWtTH7ztwZ9qSuqfreu_rfk3Ht5zbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040785615</pqid></control><display><type>article</type><title>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>La Vars, Sian ; Newton, Kelly ; Quinton, Jamie ; Cheng, Pei-Yu ; Wei, Der-Hsin ; Chan, Yuet-Loy ; Harmer, Sarah</creator><creatorcontrib>La Vars, Sian ; Newton, Kelly ; Quinton, Jamie ; Cheng, Pei-Yu ; Wei, Der-Hsin ; Chan, Yuet-Loy ; Harmer, Sarah</creatorcontrib><description>A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min8040132</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biofilms ; Biopolymers ; Contact angle ; Deoxyribonucleic acid ; DNA ; Electron microscopy ; Exposure ; Extracellular ; Fatty acids ; Fine structure ; Flotation ; Hydrophobicity ; Ions ; Iron ; Lipids ; Mass spectrometry ; Mass spectroscopy ; Oxidation ; Photoelectric emission ; Physicochemical processes ; Physicochemical properties ; Proteins ; Pyrite ; Scanning electron microscopy ; Secondary ion mass spectrometry ; Spectra ; Sulfides ; Sulphides ; Ultrastructure</subject><ispartof>Minerals (Basel), 2018-04, Vol.8 (4), p.132</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</citedby><cites>FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</cites><orcidid>0000-0002-6877-602X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>La Vars, Sian</creatorcontrib><creatorcontrib>Newton, Kelly</creatorcontrib><creatorcontrib>Quinton, Jamie</creatorcontrib><creatorcontrib>Cheng, Pei-Yu</creatorcontrib><creatorcontrib>Wei, Der-Hsin</creatorcontrib><creatorcontrib>Chan, Yuet-Loy</creatorcontrib><creatorcontrib>Harmer, Sarah</creatorcontrib><title>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</title><title>Minerals (Basel)</title><description>A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.</description><subject>Biofilms</subject><subject>Biopolymers</subject><subject>Contact angle</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electron microscopy</subject><subject>Exposure</subject><subject>Extracellular</subject><subject>Fatty acids</subject><subject>Fine structure</subject><subject>Flotation</subject><subject>Hydrophobicity</subject><subject>Ions</subject><subject>Iron</subject><subject>Lipids</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxidation</subject><subject>Photoelectric emission</subject><subject>Physicochemical processes</subject><subject>Physicochemical properties</subject><subject>Proteins</subject><subject>Pyrite</subject><subject>Scanning electron microscopy</subject><subject>Secondary ion mass spectrometry</subject><subject>Spectra</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Ultrastructure</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkF9LwzAUxYMoOOZe_AQB34Rq_jRt-jjGdMLAwRR8K7dpwjLaZiYpbJ_Ar21kgt6Xcx5-51w4CN1S8sB5RR57O0iSE8rZBZowUoqMFvzj8p-_RrMQ9iRdRbkUbIK-tqM3oDRe7HRvFXTJgAcVtbcBonUDdgZvTt5GjZfHgwu6xdHhubKtjTvrGlC268aAjfbeuaNtYQgYhhbPQ3DKQkyB5TGmTp24DjzeuO7Up36Ft2MTIgxKhxt0ZaALevarU_T-tHxbrLL16_PLYr7OgFMZM5qTRlJjKllwyZUmhjaKihaI1IwzULmqBCu1NDkQnpA8F7LIS5LSAijlU3R37j149znqEOu9G_2QXtYsbVdKUVCRqPszpbwLwWtTH7ztwZ9qSuqfreu_rfk3Ht5zbw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>La Vars, Sian</creator><creator>Newton, Kelly</creator><creator>Quinton, Jamie</creator><creator>Cheng, Pei-Yu</creator><creator>Wei, Der-Hsin</creator><creator>Chan, Yuet-Loy</creator><creator>Harmer, Sarah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6877-602X</orcidid></search><sort><creationdate>20180401</creationdate><title>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</title><author>La Vars, Sian ; Newton, Kelly ; Quinton, Jamie ; Cheng, Pei-Yu ; Wei, Der-Hsin ; Chan, Yuet-Loy ; Harmer, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-140b81ff986383ce0f1bc15da08e232ac4c9527e8f4a03383445864703185a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biofilms</topic><topic>Biopolymers</topic><topic>Contact angle</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electron microscopy</topic><topic>Exposure</topic><topic>Extracellular</topic><topic>Fatty acids</topic><topic>Fine structure</topic><topic>Flotation</topic><topic>Hydrophobicity</topic><topic>Ions</topic><topic>Iron</topic><topic>Lipids</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxidation</topic><topic>Photoelectric emission</topic><topic>Physicochemical processes</topic><topic>Physicochemical properties</topic><topic>Proteins</topic><topic>Pyrite</topic><topic>Scanning electron microscopy</topic><topic>Secondary ion mass spectrometry</topic><topic>Spectra</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>La Vars, Sian</creatorcontrib><creatorcontrib>Newton, Kelly</creatorcontrib><creatorcontrib>Quinton, Jamie</creatorcontrib><creatorcontrib>Cheng, Pei-Yu</creatorcontrib><creatorcontrib>Wei, Der-Hsin</creatorcontrib><creatorcontrib>Chan, Yuet-Loy</creatorcontrib><creatorcontrib>Harmer, Sarah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>La Vars, Sian</au><au>Newton, Kelly</au><au>Quinton, Jamie</au><au>Cheng, Pei-Yu</au><au>Wei, Der-Hsin</au><au>Chan, Yuet-Loy</au><au>Harmer, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances</atitle><jtitle>Minerals (Basel)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>132</spage><pages>132-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min8040132</doi><orcidid>https://orcid.org/0000-0002-6877-602X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2018-04, Vol.8 (4), p.132
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_2040785615
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biofilms
Biopolymers
Contact angle
Deoxyribonucleic acid
DNA
Electron microscopy
Exposure
Extracellular
Fatty acids
Fine structure
Flotation
Hydrophobicity
Ions
Iron
Lipids
Mass spectrometry
Mass spectroscopy
Oxidation
Photoelectric emission
Physicochemical processes
Physicochemical properties
Proteins
Pyrite
Scanning electron microscopy
Secondary ion mass spectrometry
Spectra
Sulfides
Sulphides
Ultrastructure
title Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Chemical%20Characterisation%20of%20Pyrite%20Exposed%20to%20Acidithiobacillus%20ferrooxidans%20and%20Associated%20Extracellular%20Polymeric%20Substances&rft.jtitle=Minerals%20(Basel)&rft.au=La%20Vars,%20Sian&rft.date=2018-04-01&rft.volume=8&rft.issue=4&rft.spage=132&rft.pages=132-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min8040132&rft_dat=%3Cproquest_cross%3E2040785615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040785615&rft_id=info:pmid/&rfr_iscdi=true