A Dirac-Type Theorem for 3-Uniform Hypergraphs
A Hamiltonian cycle in a 3-uniform hypergraph is a cyclic ordering of the vertices in which every three consecutive vertices form an edge. In this paper we prove an approximate and asymptotic version of an analogue of Dirac's celebrated theorem for graphs: for each γ>0 there exists n0 such t...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2006-01, Vol.15 (1-2), p.229-251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Hamiltonian cycle in a 3-uniform hypergraph is a cyclic ordering of the vertices in which every three consecutive vertices form an edge. In this paper we prove an approximate and asymptotic version of an analogue of Dirac's celebrated theorem for graphs: for each γ>0 there exists n0 such that every 3-uniform hypergraph on $n\geq n_0$ vertices, in which each pair of vertices belongs to at least $(1/2+\gamma)n$ edges, contains a Hamiltonian cycle. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548305007042 |