Geometrical Bijections in Discrete Lattices

We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 1999-01, Vol.8 (1-2), p.109-129
Hauptverfasser: CARSTENS, HANS-GEORG, DEUBER, WALTER A., THUMSER, WOLFGANG, KOPPENRADE, ELKE
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1-2
container_start_page 109
container_title Combinatorics, probability & computing
container_volume 8
creator CARSTENS, HANS-GEORG
DEUBER, WALTER A.
THUMSER, WOLFGANG
KOPPENRADE, ELKE
description We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.
doi_str_mv 10.1017/S0963548398003484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_203983868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548398003484</cupid><sourcerecordid>1397687941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-58295a45adc35e26e6f8b65c2a0b45dbd0093798ab2ce01ddf679c14c4e7b55d3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIu4osA6fsQ5QoEGiECIwtVynA1yaZtiuxL8PalawQFxWq1mZmd2CDmmcEaB5ufPUEgmuGKFAmBc8R0yoFwWaUYl2yWDNZyu8X1yEMIUAISQMCCnY-zmGL2zZpZcuina6LpFSNwiuXLBeoyYVCZGZzEckr3WzAIebeeQvNxcT0ZlWj2Ob0cXVWqZyGIqVFYIw4Vp-h0zibJVtRQ2M1Bz0dQNQMHyQpk6swi0aVqZF5ZyyzGvhWjYkJxs7i5997HCEPW0W_lFb6kz6B9kSqqeRDck67sQPLZ66d3c-C9NQa8r0X8q6TXpRuNCxM8fgfHvWuYsF1qOn_Rd9fpQ3kOpJz2fbT3MvPauecPfJP-7fAOc4XDi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203983868</pqid></control><display><type>article</type><title>Geometrical Bijections in Discrete Lattices</title><source>Cambridge University Press Journals Complete</source><creator>CARSTENS, HANS-GEORG ; DEUBER, WALTER A. ; THUMSER, WOLFGANG ; KOPPENRADE, ELKE</creator><creatorcontrib>CARSTENS, HANS-GEORG ; DEUBER, WALTER A. ; THUMSER, WOLFGANG ; KOPPENRADE, ELKE</creatorcontrib><description>We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548398003484</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><ispartof>Combinatorics, probability &amp; computing, 1999-01, Vol.8 (1-2), p.109-129</ispartof><rights>1999 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-58295a45adc35e26e6f8b65c2a0b45dbd0093798ab2ce01ddf679c14c4e7b55d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548398003484/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>CARSTENS, HANS-GEORG</creatorcontrib><creatorcontrib>DEUBER, WALTER A.</creatorcontrib><creatorcontrib>THUMSER, WOLFGANG</creatorcontrib><creatorcontrib>KOPPENRADE, ELKE</creatorcontrib><title>Geometrical Bijections in Discrete Lattices</title><title>Combinatorics, probability &amp; computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIu4osA6fsQ5QoEGiECIwtVynA1yaZtiuxL8PalawQFxWq1mZmd2CDmmcEaB5ufPUEgmuGKFAmBc8R0yoFwWaUYl2yWDNZyu8X1yEMIUAISQMCCnY-zmGL2zZpZcuina6LpFSNwiuXLBeoyYVCZGZzEckr3WzAIebeeQvNxcT0ZlWj2Ob0cXVWqZyGIqVFYIw4Vp-h0zibJVtRQ2M1Bz0dQNQMHyQpk6swi0aVqZF5ZyyzGvhWjYkJxs7i5997HCEPW0W_lFb6kz6B9kSqqeRDck67sQPLZ66d3c-C9NQa8r0X8q6TXpRuNCxM8fgfHvWuYsF1qOn_Rd9fpQ3kOpJz2fbT3MvPauecPfJP-7fAOc4XDi</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>CARSTENS, HANS-GEORG</creator><creator>DEUBER, WALTER A.</creator><creator>THUMSER, WOLFGANG</creator><creator>KOPPENRADE, ELKE</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199901</creationdate><title>Geometrical Bijections in Discrete Lattices</title><author>CARSTENS, HANS-GEORG ; DEUBER, WALTER A. ; THUMSER, WOLFGANG ; KOPPENRADE, ELKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-58295a45adc35e26e6f8b65c2a0b45dbd0093798ab2ce01ddf679c14c4e7b55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARSTENS, HANS-GEORG</creatorcontrib><creatorcontrib>DEUBER, WALTER A.</creatorcontrib><creatorcontrib>THUMSER, WOLFGANG</creatorcontrib><creatorcontrib>KOPPENRADE, ELKE</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARSTENS, HANS-GEORG</au><au>DEUBER, WALTER A.</au><au>THUMSER, WOLFGANG</au><au>KOPPENRADE, ELKE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical Bijections in Discrete Lattices</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>1999-01</date><risdate>1999</risdate><volume>8</volume><issue>1-2</issue><spage>109</spage><epage>129</epage><pages>109-129</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548398003484</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 1999-01, Vol.8 (1-2), p.109-129
issn 0963-5483
1469-2163
language eng
recordid cdi_proquest_journals_203983868
source Cambridge University Press Journals Complete
title Geometrical Bijections in Discrete Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20Bijections%20in%20Discrete%20Lattices&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=CARSTENS,%20HANS-GEORG&rft.date=1999-01&rft.volume=8&rft.issue=1-2&rft.spage=109&rft.epage=129&rft.pages=109-129&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548398003484&rft_dat=%3Cproquest_cross%3E1397687941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203983868&rft_id=info:pmid/&rft_cupid=10_1017_S0963548398003484&rfr_iscdi=true