On the Independent Domination Number of Random Regular Graphs
A dominating set $\cal D$ of a graph $G$ is a subset of $V(G)$ such that, for every vertex $v\in V(G)$, either in $v\in {\cal D}$ or there exists a vertex $u \in {\cal D}$ that is adjacent to $v$. We are interested in finding dominating sets of small cardinality. A dominating set $\cal I$ of a graph...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2006-07, Vol.15 (4), p.513-522 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 4 |
container_start_page | 513 |
container_title | Combinatorics, probability & computing |
container_volume | 15 |
creator | DUCKWORTH, W. WORMALD, N. C. |
description | A dominating set $\cal D$ of a graph $G$ is a subset of $V(G)$ such that, for every vertex $v\in V(G)$, either in $v\in {\cal D}$ or there exists a vertex $u \in {\cal D}$ that is adjacent to $v$. We are interested in finding dominating sets of small cardinality. A dominating set $\cal I$ of a graph $G$ is said to be independent if no two vertices of ${\cal I}$ are connected by an edge of $G$. The size of a smallest independent dominating set of a graph $G$ is the independent domination number of $G$. In this paper we present upper bounds on the independent domination number of random regular graphs. This is achieved by analysing the performance of a randomized greedy algorithm on random regular graphs using differential equations. |
doi_str_mv | 10.1017/S0963548305007431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_203974053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548305007431</cupid><sourcerecordid>1397653451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-54ac22b2f3b41b1958b2076598b6584b03c7669d182e11242865a2a754be19b23</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANws7gGvf-MDB1SgVKpaUeBs2YnTpjRJcRIJ3h5XreCAuOwedma_0SB0CeQaCKibF6IlEzxlRBCiOIMjNAAudUJBsmM02J2T3f0UnbXtmhAihCQDdDuvcbfyeFLnfuvjqDt831RlbbuyqfGsr5wPuCnwwtZ5U-GFX_YbG_A42O2qPUcnhd20_uKwh-jt8eF19JRM5-PJ6G6aZDFTF7k2o9TRgjkODrRIHSVKCp06KVLuCMuUlDqHlHoAymkqhaVWCe48aEfZEF3t_25D89H7tjPrpg91RBpKmFacCBZFsBdloWnb4AuzDWVlw5cBYnYlmT8lRU-y95Rt5z9_DDa8G6mYEkaOn42eRhPAzKioZweGrVwo86X_TfI_5RsfN3SI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203974053</pqid></control><display><type>article</type><title>On the Independent Domination Number of Random Regular Graphs</title><source>Cambridge University Press Journals Complete</source><creator>DUCKWORTH, W. ; WORMALD, N. C.</creator><creatorcontrib>DUCKWORTH, W. ; WORMALD, N. C.</creatorcontrib><description>A dominating set $\cal D$ of a graph $G$ is a subset of $V(G)$ such that, for every vertex $v\in V(G)$, either in $v\in {\cal D}$ or there exists a vertex $u \in {\cal D}$ that is adjacent to $v$. We are interested in finding dominating sets of small cardinality. A dominating set $\cal I$ of a graph $G$ is said to be independent if no two vertices of ${\cal I}$ are connected by an edge of $G$. The size of a smallest independent dominating set of a graph $G$ is the independent domination number of $G$. In this paper we present upper bounds on the independent domination number of random regular graphs. This is achieved by analysing the performance of a randomized greedy algorithm on random regular graphs using differential equations.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548305007431</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Combinatorics, probability & computing, 2006-07, Vol.15 (4), p.513-522</ispartof><rights>2006 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-54ac22b2f3b41b1958b2076598b6584b03c7669d182e11242865a2a754be19b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548305007431/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>DUCKWORTH, W.</creatorcontrib><creatorcontrib>WORMALD, N. C.</creatorcontrib><title>On the Independent Domination Number of Random Regular Graphs</title><title>Combinatorics, probability & computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>A dominating set $\cal D$ of a graph $G$ is a subset of $V(G)$ such that, for every vertex $v\in V(G)$, either in $v\in {\cal D}$ or there exists a vertex $u \in {\cal D}$ that is adjacent to $v$. We are interested in finding dominating sets of small cardinality. A dominating set $\cal I$ of a graph $G$ is said to be independent if no two vertices of ${\cal I}$ are connected by an edge of $G$. The size of a smallest independent dominating set of a graph $G$ is the independent domination number of $G$. In this paper we present upper bounds on the independent domination number of random regular graphs. This is achieved by analysing the performance of a randomized greedy algorithm on random regular graphs using differential equations.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANws7gGvf-MDB1SgVKpaUeBs2YnTpjRJcRIJ3h5XreCAuOwedma_0SB0CeQaCKibF6IlEzxlRBCiOIMjNAAudUJBsmM02J2T3f0UnbXtmhAihCQDdDuvcbfyeFLnfuvjqDt831RlbbuyqfGsr5wPuCnwwtZ5U-GFX_YbG_A42O2qPUcnhd20_uKwh-jt8eF19JRM5-PJ6G6aZDFTF7k2o9TRgjkODrRIHSVKCp06KVLuCMuUlDqHlHoAymkqhaVWCe48aEfZEF3t_25D89H7tjPrpg91RBpKmFacCBZFsBdloWnb4AuzDWVlw5cBYnYlmT8lRU-y95Rt5z9_DDa8G6mYEkaOn42eRhPAzKioZweGrVwo86X_TfI_5RsfN3SI</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>DUCKWORTH, W.</creator><creator>WORMALD, N. C.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200607</creationdate><title>On the Independent Domination Number of Random Regular Graphs</title><author>DUCKWORTH, W. ; WORMALD, N. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-54ac22b2f3b41b1958b2076598b6584b03c7669d182e11242865a2a754be19b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUCKWORTH, W.</creatorcontrib><creatorcontrib>WORMALD, N. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUCKWORTH, W.</au><au>WORMALD, N. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Independent Domination Number of Random Regular Graphs</atitle><jtitle>Combinatorics, probability & computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>2006-07</date><risdate>2006</risdate><volume>15</volume><issue>4</issue><spage>513</spage><epage>522</epage><pages>513-522</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>A dominating set $\cal D$ of a graph $G$ is a subset of $V(G)$ such that, for every vertex $v\in V(G)$, either in $v\in {\cal D}$ or there exists a vertex $u \in {\cal D}$ that is adjacent to $v$. We are interested in finding dominating sets of small cardinality. A dominating set $\cal I$ of a graph $G$ is said to be independent if no two vertices of ${\cal I}$ are connected by an edge of $G$. The size of a smallest independent dominating set of a graph $G$ is the independent domination number of $G$. In this paper we present upper bounds on the independent domination number of random regular graphs. This is achieved by analysing the performance of a randomized greedy algorithm on random regular graphs using differential equations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548305007431</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-5483 |
ispartof | Combinatorics, probability & computing, 2006-07, Vol.15 (4), p.513-522 |
issn | 0963-5483 1469-2163 |
language | eng |
recordid | cdi_proquest_journals_203974053 |
source | Cambridge University Press Journals Complete |
title | On the Independent Domination Number of Random Regular Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Independent%20Domination%20Number%20of%20Random%20Regular%20Graphs&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=DUCKWORTH,%20W.&rft.date=2006-07&rft.volume=15&rft.issue=4&rft.spage=513&rft.epage=522&rft.pages=513-522&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548305007431&rft_dat=%3Cproquest_cross%3E1397653451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203974053&rft_id=info:pmid/&rft_cupid=10_1017_S0963548305007431&rfr_iscdi=true |