Threshold Functions for Random Graphs on a Line Segment

We look at a model of random graphs suggested by Gilbert: given an integer $n$ and $\delta > 0$, scatter $n$ vertices independently and uniformly on a metric space, and then add edges connecting pairs of vertices of distance less than $\delta$ apart. We consider the asymptotics when the metric sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2004-05, Vol.13 (3), p.373-387
1. Verfasser: McCOLM, GREGORY L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 3
container_start_page 373
container_title Combinatorics, probability & computing
container_volume 13
creator McCOLM, GREGORY L.
description We look at a model of random graphs suggested by Gilbert: given an integer $n$ and $\delta > 0$, scatter $n$ vertices independently and uniformly on a metric space, and then add edges connecting pairs of vertices of distance less than $\delta$ apart. We consider the asymptotics when the metric space is the interval [0, 1], and $\delta = \delta(n)$ is a function of $n$, for $n \to \infty$. We prove that every upwards closed property of (ordered) graphs has at least a weak threshold in this model on this metric space. (But we do find a metric space on which some upwards closed properties do not even have weak thresholds in this model.) We also prove that every upwards closed property with a threshold much above connectivity's threshold has a strong threshold. (But we also find a sequence of upwards closed properties with lower thresholds that are strictly weak.)
doi_str_mv 10.1017/S0963548304006121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_203952781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548304006121</cupid><sourcerecordid>1397623791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ada5c22a569c449a3c96736928f102e00b6430e8cc7010a734e1c3df58be60513</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqXwA9gs9sCzHdvJSCvagiohaJkt13HalMYudiLBvydRKxgQ0xvuu3enQ-iawC0BIu8WkAvG04xBCiAIJSdoQFKRJ5QIdooGvZz0-jm6iHELAJwLGCC53AQbN35X4EnrTFN5F3HpA37VrvA1nga930TsHdZ4XjmLF3ZdW9dcorNS76K9Ot4heps8LMezZP48fRzfzxPDOG0SXWhuKNVc5CZNc81MLiQTOc1KAtQCrETKwGbGSCCgJUstMawoebayAjhhQ3Rz-LsP_qO1sVFb3wbXRSoKLOdUZj1EDpAJPsZgS7UPVa3DlyKg-nnUn3k6T3LwVLGxnz8GHd5V11ByJaYvioyy0dOYz5ToeHbM0PUqVMXa_jb5P-UbWRFzBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203952781</pqid></control><display><type>article</type><title>Threshold Functions for Random Graphs on a Line Segment</title><source>Cambridge Journals</source><creator>McCOLM, GREGORY L.</creator><creatorcontrib>McCOLM, GREGORY L.</creatorcontrib><description>We look at a model of random graphs suggested by Gilbert: given an integer $n$ and $\delta &gt; 0$, scatter $n$ vertices independently and uniformly on a metric space, and then add edges connecting pairs of vertices of distance less than $\delta$ apart. We consider the asymptotics when the metric space is the interval [0, 1], and $\delta = \delta(n)$ is a function of $n$, for $n \to \infty$. We prove that every upwards closed property of (ordered) graphs has at least a weak threshold in this model on this metric space. (But we do find a metric space on which some upwards closed properties do not even have weak thresholds in this model.) We also prove that every upwards closed property with a threshold much above connectivity's threshold has a strong threshold. (But we also find a sequence of upwards closed properties with lower thresholds that are strictly weak.)</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548304006121</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Combinatorics, probability &amp; computing, 2004-05, Vol.13 (3), p.373-387</ispartof><rights>2004 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ada5c22a569c449a3c96736928f102e00b6430e8cc7010a734e1c3df58be60513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548304006121/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>McCOLM, GREGORY L.</creatorcontrib><title>Threshold Functions for Random Graphs on a Line Segment</title><title>Combinatorics, probability &amp; computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>We look at a model of random graphs suggested by Gilbert: given an integer $n$ and $\delta &gt; 0$, scatter $n$ vertices independently and uniformly on a metric space, and then add edges connecting pairs of vertices of distance less than $\delta$ apart. We consider the asymptotics when the metric space is the interval [0, 1], and $\delta = \delta(n)$ is a function of $n$, for $n \to \infty$. We prove that every upwards closed property of (ordered) graphs has at least a weak threshold in this model on this metric space. (But we do find a metric space on which some upwards closed properties do not even have weak thresholds in this model.) We also prove that every upwards closed property with a threshold much above connectivity's threshold has a strong threshold. (But we also find a sequence of upwards closed properties with lower thresholds that are strictly weak.)</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAUhC0EEqXwA9gs9sCzHdvJSCvagiohaJkt13HalMYudiLBvydRKxgQ0xvuu3enQ-iawC0BIu8WkAvG04xBCiAIJSdoQFKRJ5QIdooGvZz0-jm6iHELAJwLGCC53AQbN35X4EnrTFN5F3HpA37VrvA1nga930TsHdZ4XjmLF3ZdW9dcorNS76K9Ot4heps8LMezZP48fRzfzxPDOG0SXWhuKNVc5CZNc81MLiQTOc1KAtQCrETKwGbGSCCgJUstMawoebayAjhhQ3Rz-LsP_qO1sVFb3wbXRSoKLOdUZj1EDpAJPsZgS7UPVa3DlyKg-nnUn3k6T3LwVLGxnz8GHd5V11ByJaYvioyy0dOYz5ToeHbM0PUqVMXa_jb5P-UbWRFzBA</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>McCOLM, GREGORY L.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200405</creationdate><title>Threshold Functions for Random Graphs on a Line Segment</title><author>McCOLM, GREGORY L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ada5c22a569c449a3c96736928f102e00b6430e8cc7010a734e1c3df58be60513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCOLM, GREGORY L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCOLM, GREGORY L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold Functions for Random Graphs on a Line Segment</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>2004-05</date><risdate>2004</risdate><volume>13</volume><issue>3</issue><spage>373</spage><epage>387</epage><pages>373-387</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>We look at a model of random graphs suggested by Gilbert: given an integer $n$ and $\delta &gt; 0$, scatter $n$ vertices independently and uniformly on a metric space, and then add edges connecting pairs of vertices of distance less than $\delta$ apart. We consider the asymptotics when the metric space is the interval [0, 1], and $\delta = \delta(n)$ is a function of $n$, for $n \to \infty$. We prove that every upwards closed property of (ordered) graphs has at least a weak threshold in this model on this metric space. (But we do find a metric space on which some upwards closed properties do not even have weak thresholds in this model.) We also prove that every upwards closed property with a threshold much above connectivity's threshold has a strong threshold. (But we also find a sequence of upwards closed properties with lower thresholds that are strictly weak.)</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548304006121</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 2004-05, Vol.13 (3), p.373-387
issn 0963-5483
1469-2163
language eng
recordid cdi_proquest_journals_203952781
source Cambridge Journals
title Threshold Functions for Random Graphs on a Line Segment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20Functions%20for%20Random%20Graphs%20on%20a%20Line%20Segment&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=McCOLM,%20GREGORY%20L.&rft.date=2004-05&rft.volume=13&rft.issue=3&rft.spage=373&rft.epage=387&rft.pages=373-387&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548304006121&rft_dat=%3Cproquest_cross%3E1397623791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203952781&rft_id=info:pmid/&rft_cupid=10_1017_S0963548304006121&rfr_iscdi=true