Robust noise MKMFCC–SVM automatic speaker identification

This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of speech technology 2018-06, Vol.21 (2), p.185-192
1. Verfasser: Faragallah, Osama S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 185
container_title International journal of speech technology
container_volume 21
creator Faragallah, Osama S.
description This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.
doi_str_mv 10.1007/s10772-018-9494-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038764472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2038764472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuC6-h7adok7qQ4Kk4RdHAb2iSVjk47Ju3Cnf_gH_olZqjgytW7XO69Dw4hpwjnCCAuAoIQjAJKqrjiVO2RGWbRkYiwH3UqkTKO-SE5CmENAEooNiOXj309hiHp-ja4pLwvF0Xx_fn19Fwm1Tj0m2poTRK2rnp1Pmmt64a2aU10--6YHDTVW3Anv3dOVovrVXFLlw83d8XVkpoU84GyGmSe5YLJ1NbW1Zy5xlk0ihmJFjPLMyWcTEWtbOOE4VIwlLyxeQVgeTonZ9Ps1vfvowuDXvej7-JHzSCVIudcsJjCKWV8H4J3jd76dlP5D42gd4T0REhHQnpHSKvYYVMnxGz34vzf8v-lH_LqaKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038764472</pqid></control><display><type>article</type><title>Robust noise MKMFCC–SVM automatic speaker identification</title><source>SpringerLink Journals</source><creator>Faragallah, Osama S.</creator><creatorcontrib>Faragallah, Osama S.</creatorcontrib><description>This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.</description><identifier>ISSN: 1381-2416</identifier><identifier>EISSN: 1572-8110</identifier><identifier>DOI: 10.1007/s10772-018-9494-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Audio signals ; Degradation ; Engineering ; Feature extraction ; Noise ; Signal,Image and Speech Processing ; Social Sciences ; Speaker identification ; Support vector machines ; Telephones</subject><ispartof>International journal of speech technology, 2018-06, Vol.21 (2), p.185-192</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</citedby><cites>FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10772-018-9494-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10772-018-9494-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Faragallah, Osama S.</creatorcontrib><title>Robust noise MKMFCC–SVM automatic speaker identification</title><title>International journal of speech technology</title><addtitle>Int J Speech Technol</addtitle><description>This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.</description><subject>Artificial Intelligence</subject><subject>Audio signals</subject><subject>Degradation</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Noise</subject><subject>Signal,Image and Speech Processing</subject><subject>Social Sciences</subject><subject>Speaker identification</subject><subject>Support vector machines</subject><subject>Telephones</subject><issn>1381-2416</issn><issn>1572-8110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI5-gLuC6-h7adok7qQ4Kk4RdHAb2iSVjk47Ju3Cnf_gH_olZqjgytW7XO69Dw4hpwjnCCAuAoIQjAJKqrjiVO2RGWbRkYiwH3UqkTKO-SE5CmENAEooNiOXj309hiHp-ja4pLwvF0Xx_fn19Fwm1Tj0m2poTRK2rnp1Pmmt64a2aU10--6YHDTVW3Anv3dOVovrVXFLlw83d8XVkpoU84GyGmSe5YLJ1NbW1Zy5xlk0ihmJFjPLMyWcTEWtbOOE4VIwlLyxeQVgeTonZ9Ps1vfvowuDXvej7-JHzSCVIudcsJjCKWV8H4J3jd76dlP5D42gd4T0REhHQnpHSKvYYVMnxGz34vzf8v-lH_LqaKM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Faragallah, Osama S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope></search><sort><creationdate>20180601</creationdate><title>Robust noise MKMFCC–SVM automatic speaker identification</title><author>Faragallah, Osama S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Audio signals</topic><topic>Degradation</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Noise</topic><topic>Signal,Image and Speech Processing</topic><topic>Social Sciences</topic><topic>Speaker identification</topic><topic>Support vector machines</topic><topic>Telephones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faragallah, Osama S.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>International journal of speech technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faragallah, Osama S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust noise MKMFCC–SVM automatic speaker identification</atitle><jtitle>International journal of speech technology</jtitle><stitle>Int J Speech Technol</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>21</volume><issue>2</issue><spage>185</spage><epage>192</epage><pages>185-192</pages><issn>1381-2416</issn><eissn>1572-8110</eissn><abstract>This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10772-018-9494-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1381-2416
ispartof International journal of speech technology, 2018-06, Vol.21 (2), p.185-192
issn 1381-2416
1572-8110
language eng
recordid cdi_proquest_journals_2038764472
source SpringerLink Journals
subjects Artificial Intelligence
Audio signals
Degradation
Engineering
Feature extraction
Noise
Signal,Image and Speech Processing
Social Sciences
Speaker identification
Support vector machines
Telephones
title Robust noise MKMFCC–SVM automatic speaker identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20noise%20MKMFCC%E2%80%93SVM%20automatic%20speaker%20identification&rft.jtitle=International%20journal%20of%20speech%20technology&rft.au=Faragallah,%20Osama%20S.&rft.date=2018-06-01&rft.volume=21&rft.issue=2&rft.spage=185&rft.epage=192&rft.pages=185-192&rft.issn=1381-2416&rft.eissn=1572-8110&rft_id=info:doi/10.1007/s10772-018-9494-9&rft_dat=%3Cproquest_cross%3E2038764472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038764472&rft_id=info:pmid/&rfr_iscdi=true