Robust noise MKMFCC–SVM automatic speaker identification
This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it u...
Gespeichert in:
Veröffentlicht in: | International journal of speech technology 2018-06, Vol.21 (2), p.185-192 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | International journal of speech technology |
container_volume | 21 |
creator | Faragallah, Osama S. |
description | This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation. |
doi_str_mv | 10.1007/s10772-018-9494-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038764472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2038764472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuC6-h7adok7qQ4Kk4RdHAb2iSVjk47Ju3Cnf_gH_olZqjgytW7XO69Dw4hpwjnCCAuAoIQjAJKqrjiVO2RGWbRkYiwH3UqkTKO-SE5CmENAEooNiOXj309hiHp-ja4pLwvF0Xx_fn19Fwm1Tj0m2poTRK2rnp1Pmmt64a2aU10--6YHDTVW3Anv3dOVovrVXFLlw83d8XVkpoU84GyGmSe5YLJ1NbW1Zy5xlk0ihmJFjPLMyWcTEWtbOOE4VIwlLyxeQVgeTonZ9Ps1vfvowuDXvej7-JHzSCVIudcsJjCKWV8H4J3jd76dlP5D42gd4T0REhHQnpHSKvYYVMnxGz34vzf8v-lH_LqaKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038764472</pqid></control><display><type>article</type><title>Robust noise MKMFCC–SVM automatic speaker identification</title><source>SpringerLink Journals</source><creator>Faragallah, Osama S.</creator><creatorcontrib>Faragallah, Osama S.</creatorcontrib><description>This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.</description><identifier>ISSN: 1381-2416</identifier><identifier>EISSN: 1572-8110</identifier><identifier>DOI: 10.1007/s10772-018-9494-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Audio signals ; Degradation ; Engineering ; Feature extraction ; Noise ; Signal,Image and Speech Processing ; Social Sciences ; Speaker identification ; Support vector machines ; Telephones</subject><ispartof>International journal of speech technology, 2018-06, Vol.21 (2), p.185-192</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</citedby><cites>FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10772-018-9494-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10772-018-9494-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Faragallah, Osama S.</creatorcontrib><title>Robust noise MKMFCC–SVM automatic speaker identification</title><title>International journal of speech technology</title><addtitle>Int J Speech Technol</addtitle><description>This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.</description><subject>Artificial Intelligence</subject><subject>Audio signals</subject><subject>Degradation</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Noise</subject><subject>Signal,Image and Speech Processing</subject><subject>Social Sciences</subject><subject>Speaker identification</subject><subject>Support vector machines</subject><subject>Telephones</subject><issn>1381-2416</issn><issn>1572-8110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI5-gLuC6-h7adok7qQ4Kk4RdHAb2iSVjk47Ju3Cnf_gH_olZqjgytW7XO69Dw4hpwjnCCAuAoIQjAJKqrjiVO2RGWbRkYiwH3UqkTKO-SE5CmENAEooNiOXj309hiHp-ja4pLwvF0Xx_fn19Fwm1Tj0m2poTRK2rnp1Pmmt64a2aU10--6YHDTVW3Anv3dOVovrVXFLlw83d8XVkpoU84GyGmSe5YLJ1NbW1Zy5xlk0ihmJFjPLMyWcTEWtbOOE4VIwlLyxeQVgeTonZ9Ps1vfvowuDXvej7-JHzSCVIudcsJjCKWV8H4J3jd76dlP5D42gd4T0REhHQnpHSKvYYVMnxGz34vzf8v-lH_LqaKM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Faragallah, Osama S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope></search><sort><creationdate>20180601</creationdate><title>Robust noise MKMFCC–SVM automatic speaker identification</title><author>Faragallah, Osama S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2b086567283dbdeb42efed1c92c81d15d4597e837b9dfe7c4872184fd6a00d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Audio signals</topic><topic>Degradation</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Noise</topic><topic>Signal,Image and Speech Processing</topic><topic>Social Sciences</topic><topic>Speaker identification</topic><topic>Support vector machines</topic><topic>Telephones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faragallah, Osama S.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>International journal of speech technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faragallah, Osama S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust noise MKMFCC–SVM automatic speaker identification</atitle><jtitle>International journal of speech technology</jtitle><stitle>Int J Speech Technol</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>21</volume><issue>2</issue><spage>185</spage><epage>192</epage><pages>185-192</pages><issn>1381-2416</issn><eissn>1572-8110</eissn><abstract>This paper proposes robust noise automatic speaker identification (ASI) scheme named MKMFCC–SVM. It based on the Multiple Kernel Weighted Mel Frequency Cepstral Coefficient (MKMFCC) and support vector machine (SVM). Firstly, the MKMFCC is employed for extracting features from degraded audio and it uses multiple kernels such as the exponential and tangential and for MFCC’s weighting. Secondly, the extracted features are then categorized with the SVM classification technique. A comparative study is performed between the proposed MKMFCC–SVM and the MFCC–SVM ASI schemes using the MKMFCC and MFCCs with five schemes for extracting features from telephone-analogous and noisy-like degraded audio signals. Experimental tests prove that the proposed MKMFCC–SVM ASI scheme yields higher identification rate in noise presence or degradation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10772-018-9494-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-2416 |
ispartof | International journal of speech technology, 2018-06, Vol.21 (2), p.185-192 |
issn | 1381-2416 1572-8110 |
language | eng |
recordid | cdi_proquest_journals_2038764472 |
source | SpringerLink Journals |
subjects | Artificial Intelligence Audio signals Degradation Engineering Feature extraction Noise Signal,Image and Speech Processing Social Sciences Speaker identification Support vector machines Telephones |
title | Robust noise MKMFCC–SVM automatic speaker identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20noise%20MKMFCC%E2%80%93SVM%20automatic%20speaker%20identification&rft.jtitle=International%20journal%20of%20speech%20technology&rft.au=Faragallah,%20Osama%20S.&rft.date=2018-06-01&rft.volume=21&rft.issue=2&rft.spage=185&rft.epage=192&rft.pages=185-192&rft.issn=1381-2416&rft.eissn=1572-8110&rft_id=info:doi/10.1007/s10772-018-9494-9&rft_dat=%3Cproquest_cross%3E2038764472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038764472&rft_id=info:pmid/&rfr_iscdi=true |