Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers

The turbulent–non-turbulent interface (TNTI) of supersonic turbulent boundary layers is a fundamental but relatively unexplored physics problem. In this study, we present experimental results from fractal analysis on the TNTI of supersonic turbulent boundary layers, and test the applicability of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2018-05, Vol.843, Article R2
Hauptverfasser: Zhuang, Yi, Tan, Huijun, Huang, Hexia, Liu, Yazhou, Zhang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 843
creator Zhuang, Yi
Tan, Huijun
Huang, Hexia
Liu, Yazhou
Zhang, Yue
description The turbulent–non-turbulent interface (TNTI) of supersonic turbulent boundary layers is a fundamental but relatively unexplored physics problem. In this study, we present experimental results from fractal analysis on the TNTI of supersonic turbulent boundary layers, and test the applicability of the additive law for these flows. By applying the nanoparticle-tracer planar laser scattering (NPLS) technique in a supersonic wind tunnel, we obtain data covering nearly three decades in scale. The box-counting results indicate that the TNTI of supersonic turbulent boundary layers is a self-similar fractal with a fractal dimension of 2.31. By comparing data sets acquired from two orthogonal planes, we find that the scaling exponent does not depend on direction, consistent with the validity of the additive law for the TNTI of turbulent boundary layers in a scale range with the large-scale limit not exceeding approximately $0.05\unicode[STIX]{x1D6FF}$ .
doi_str_mv 10.1017/jfm.2018.220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038584845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_220</cupid><sourcerecordid>2038584845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-be1f3fe129a1606ae0473a26dc0e7bf529878f02f48ac20569e498ff57487ada3</originalsourceid><addsrcrecordid>eNptkEFOwzAQRS0EEqWw4wCR2JIwdpzYWaKKAlIlNrC2Jo5dUqVOsZNFd9yBC3AWjsJJcFVEN6zmj-b9mdEn5JJCRoGKm5VdZwyozBiDIzKhvKxSUfLimEwAGEspZXBKzkJYAdAcKjEhy7lHPWCX6FfcKePbMLQ6JL1NhtHXY2fc8P3-4XqX_vVJ6yJoUZuokjBujA-9a_XBkdT96Br026_PDrdxfE5OLHbBXPzWKXmZ3z3PHtLF0_3j7HaRap7LIa0Ntbk1lFVISyjRABc5srLRYERtC1ZJIS0wyyVqBkVZGV5JawvBpcAG8ym52u_d-P5tNGFQq370Lp5UDHJZSC55EanrPaV9H4I3Vm18u47vKgpqF6WKUapdlCpGGfHsF8d17dtmaQ5b_zX8ADb4enQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038584845</pqid></control><display><type>article</type><title>Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers</title><source>Cambridge Journals</source><creator>Zhuang, Yi ; Tan, Huijun ; Huang, Hexia ; Liu, Yazhou ; Zhang, Yue</creator><creatorcontrib>Zhuang, Yi ; Tan, Huijun ; Huang, Hexia ; Liu, Yazhou ; Zhang, Yue</creatorcontrib><description>The turbulent–non-turbulent interface (TNTI) of supersonic turbulent boundary layers is a fundamental but relatively unexplored physics problem. In this study, we present experimental results from fractal analysis on the TNTI of supersonic turbulent boundary layers, and test the applicability of the additive law for these flows. By applying the nanoparticle-tracer planar laser scattering (NPLS) technique in a supersonic wind tunnel, we obtain data covering nearly three decades in scale. The box-counting results indicate that the TNTI of supersonic turbulent boundary layers is a self-similar fractal with a fractal dimension of 2.31. By comparing data sets acquired from two orthogonal planes, we find that the scaling exponent does not depend on direction, consistent with the validity of the additive law for the TNTI of turbulent boundary layers in a scale range with the large-scale limit not exceeding approximately $0.05\unicode[STIX]{x1D6FF}$ .</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.220</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Additives ; Aeronautics ; Boundaries ; Boundary layer ; Boundary layers ; Computational fluid dynamics ; Data acquisition ; Fluids ; Fractal analysis ; Fractals ; JFM Rapids ; Lasers ; Nanoparticles ; Orthogonality ; Physics ; Planes ; Scaling ; Self-similarity ; Tracers ; Turbulent boundary layer ; Vortices ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Journal of fluid mechanics, 2018-05, Vol.843, Article R2</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-be1f3fe129a1606ae0473a26dc0e7bf529878f02f48ac20569e498ff57487ada3</citedby><cites>FETCH-LOGICAL-c438t-be1f3fe129a1606ae0473a26dc0e7bf529878f02f48ac20569e498ff57487ada3</cites><orcidid>0000-0002-5093-7278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018002203/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Zhuang, Yi</creatorcontrib><creatorcontrib>Tan, Huijun</creatorcontrib><creatorcontrib>Huang, Hexia</creatorcontrib><creatorcontrib>Liu, Yazhou</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The turbulent–non-turbulent interface (TNTI) of supersonic turbulent boundary layers is a fundamental but relatively unexplored physics problem. In this study, we present experimental results from fractal analysis on the TNTI of supersonic turbulent boundary layers, and test the applicability of the additive law for these flows. By applying the nanoparticle-tracer planar laser scattering (NPLS) technique in a supersonic wind tunnel, we obtain data covering nearly three decades in scale. The box-counting results indicate that the TNTI of supersonic turbulent boundary layers is a self-similar fractal with a fractal dimension of 2.31. By comparing data sets acquired from two orthogonal planes, we find that the scaling exponent does not depend on direction, consistent with the validity of the additive law for the TNTI of turbulent boundary layers in a scale range with the large-scale limit not exceeding approximately $0.05\unicode[STIX]{x1D6FF}$ .</description><subject>Additives</subject><subject>Aeronautics</subject><subject>Boundaries</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Data acquisition</subject><subject>Fluids</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>JFM Rapids</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Orthogonality</subject><subject>Physics</subject><subject>Planes</subject><subject>Scaling</subject><subject>Self-similarity</subject><subject>Tracers</subject><subject>Turbulent boundary layer</subject><subject>Vortices</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFOwzAQRS0EEqWw4wCR2JIwdpzYWaKKAlIlNrC2Jo5dUqVOsZNFd9yBC3AWjsJJcFVEN6zmj-b9mdEn5JJCRoGKm5VdZwyozBiDIzKhvKxSUfLimEwAGEspZXBKzkJYAdAcKjEhy7lHPWCX6FfcKePbMLQ6JL1NhtHXY2fc8P3-4XqX_vVJ6yJoUZuokjBujA-9a_XBkdT96Br026_PDrdxfE5OLHbBXPzWKXmZ3z3PHtLF0_3j7HaRap7LIa0Ntbk1lFVISyjRABc5srLRYERtC1ZJIS0wyyVqBkVZGV5JawvBpcAG8ym52u_d-P5tNGFQq370Lp5UDHJZSC55EanrPaV9H4I3Vm18u47vKgpqF6WKUapdlCpGGfHsF8d17dtmaQ5b_zX8ADb4enQ</recordid><startdate>20180525</startdate><enddate>20180525</enddate><creator>Zhuang, Yi</creator><creator>Tan, Huijun</creator><creator>Huang, Hexia</creator><creator>Liu, Yazhou</creator><creator>Zhang, Yue</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5093-7278</orcidid></search><sort><creationdate>20180525</creationdate><title>Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers</title><author>Zhuang, Yi ; Tan, Huijun ; Huang, Hexia ; Liu, Yazhou ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-be1f3fe129a1606ae0473a26dc0e7bf529878f02f48ac20569e498ff57487ada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Aeronautics</topic><topic>Boundaries</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Data acquisition</topic><topic>Fluids</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>JFM Rapids</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Orthogonality</topic><topic>Physics</topic><topic>Planes</topic><topic>Scaling</topic><topic>Self-similarity</topic><topic>Tracers</topic><topic>Turbulent boundary layer</topic><topic>Vortices</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Yi</creatorcontrib><creatorcontrib>Tan, Huijun</creatorcontrib><creatorcontrib>Huang, Hexia</creatorcontrib><creatorcontrib>Liu, Yazhou</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Yi</au><au>Tan, Huijun</au><au>Huang, Hexia</au><au>Liu, Yazhou</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-05-25</date><risdate>2018</risdate><volume>843</volume><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The turbulent–non-turbulent interface (TNTI) of supersonic turbulent boundary layers is a fundamental but relatively unexplored physics problem. In this study, we present experimental results from fractal analysis on the TNTI of supersonic turbulent boundary layers, and test the applicability of the additive law for these flows. By applying the nanoparticle-tracer planar laser scattering (NPLS) technique in a supersonic wind tunnel, we obtain data covering nearly three decades in scale. The box-counting results indicate that the TNTI of supersonic turbulent boundary layers is a self-similar fractal with a fractal dimension of 2.31. By comparing data sets acquired from two orthogonal planes, we find that the scaling exponent does not depend on direction, consistent with the validity of the additive law for the TNTI of turbulent boundary layers in a scale range with the large-scale limit not exceeding approximately $0.05\unicode[STIX]{x1D6FF}$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.220</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5093-7278</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2018-05, Vol.843, Article R2
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2038584845
source Cambridge Journals
subjects Additives
Aeronautics
Boundaries
Boundary layer
Boundary layers
Computational fluid dynamics
Data acquisition
Fluids
Fractal analysis
Fractals
JFM Rapids
Lasers
Nanoparticles
Orthogonality
Physics
Planes
Scaling
Self-similarity
Tracers
Turbulent boundary layer
Vortices
Wind tunnel testing
Wind tunnels
title Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20characteristics%20of%20turbulent%E2%80%93non-turbulent%20interface%20in%20supersonic%20turbulent%20boundary%C2%A0layers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zhuang,%20Yi&rft.date=2018-05-25&rft.volume=843&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.220&rft_dat=%3Cproquest_cross%3E2038584845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038584845&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_220&rfr_iscdi=true