Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential

The dispersion coefficient of a passive solute in a steady-state pure electro-osmotic flow (EOF) of a viscoelastic liquid, whose rheological behaviour follows the simplified Phan-Thien–Tanner (sPTT) model, along a parallel flat plate microchannel, is studied. The walls of the microchannel are assume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2018-03, Vol.839, p.348-386
Hauptverfasser: Arcos, J. C., Méndez, F., Bautista, E. G., Bautista, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue
container_start_page 348
container_title Journal of fluid mechanics
container_volume 839
creator Arcos, J. C.
Méndez, F.
Bautista, E. G.
Bautista, O.
description The dispersion coefficient of a passive solute in a steady-state pure electro-osmotic flow (EOF) of a viscoelastic liquid, whose rheological behaviour follows the simplified Phan-Thien–Tanner (sPTT) model, along a parallel flat plate microchannel, is studied. The walls of the microchannel are assumed to have modulated and low $\unicode[STIX]{x1D701}$ potentials, which vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient was solved using the lubrication approximation theory (LAT). The solution of the electric potential is based on the Debye–Hückel approximation for a symmetric $(z:z)$ electrolyte. The viscoelasticity of the fluid is observed to notably amplify the axial distribution of the effective dispersion coefficients due to the variation in the $\unicode[STIX]{x1D701}$ potentials of the walls. The problem was formulated for two cases: when the Debye layer thickness (EDL) was on the order of unity (thick EDL) and in the limit where the thickness of the EDL was very small compared with the height of the microchannel (thin EDL limit). Due to the coupling between the nonlinear governing equations and the sPTT fluid model, they were replaced by their approximate linearized forms and solved in the limit of $\unicode[STIX]{x1D700}\ll 1$ using the regular perturbation technique. Here $\unicode[STIX]{x1D700}$ is the amplitude of the sinusoidal function of the $\unicode[STIX]{x1D701}$ potentials. Additionally, the numerical solution of the simplified governing equations was also obtained for $\unicode[STIX]{x1D700}=O(1)$ and compared with the approximate solution, showing excellent agreement for $0\leqslant \unicode[STIX]{x1D700}\leqslant 0.3$ . Note that the dispersion coefficient primarily depends on the Deborah number, on the ratio of the half-height of the microchannel to the Debye length, and on the assumed variation in the $\unicode[STIX]{x1D701}$ potentials of the walls.
doi_str_mv 10.1017/jfm.2018.11
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038584484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_11</cupid><sourcerecordid>2038584484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-e11851cb552c9fc627fbd86cf8b25b0090c9e2b703c946ed8555ca6c0657ab2c3</originalsourceid><addsrcrecordid>eNptkM9KAzEQxoMoWKsnXyDgUbYm2c1u9ij1LxS86Dlks0mbkk1qkm2pj-BTm1LBi6eBb37zzcwHwDVGM4xwc7fWw4wgzGYYn4AJruq2aOqKnoIJQoQUGBN0Di5iXCOES9Q2E_D9YOJGhWi8g9IrrY00yiVoHBQOKqtkCr7wcfDJSKit30GvoYBbEzNuRTzKo-lhWgU_Lle5ORgZvFwJ55SFO5MOWsyjdg-3IuyNW8KdsBZ-qSTgxqe80Ah7Cc60sFFd_dYp-Hh6fJ-_FIu359f5_aKQpG1ToTBmFMuOUiJbLWvS6K5ntdSsI7RDqEWyVaRrUCnbqlY9o5RKUUtU00Z0RJZTcHP03QT_OaqY-NqPweWVnKCSUVZVrMrU7ZHKr8QYlOabYIZ8PceIH8LmOWx-CJtjnOnilxZDF0y_VH-m__E_uNaEKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038584484</pqid></control><display><type>article</type><title>Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential</title><source>Cambridge University Press Journals Complete</source><creator>Arcos, J. C. ; Méndez, F. ; Bautista, E. G. ; Bautista, O.</creator><creatorcontrib>Arcos, J. C. ; Méndez, F. ; Bautista, E. G. ; Bautista, O.</creatorcontrib><description>The dispersion coefficient of a passive solute in a steady-state pure electro-osmotic flow (EOF) of a viscoelastic liquid, whose rheological behaviour follows the simplified Phan-Thien–Tanner (sPTT) model, along a parallel flat plate microchannel, is studied. The walls of the microchannel are assumed to have modulated and low $\unicode[STIX]{x1D701}$ potentials, which vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient was solved using the lubrication approximation theory (LAT). The solution of the electric potential is based on the Debye–Hückel approximation for a symmetric $(z:z)$ electrolyte. The viscoelasticity of the fluid is observed to notably amplify the axial distribution of the effective dispersion coefficients due to the variation in the $\unicode[STIX]{x1D701}$ potentials of the walls. The problem was formulated for two cases: when the Debye layer thickness (EDL) was on the order of unity (thick EDL) and in the limit where the thickness of the EDL was very small compared with the height of the microchannel (thin EDL limit). Due to the coupling between the nonlinear governing equations and the sPTT fluid model, they were replaced by their approximate linearized forms and solved in the limit of $\unicode[STIX]{x1D700}\ll 1$ using the regular perturbation technique. Here $\unicode[STIX]{x1D700}$ is the amplitude of the sinusoidal function of the $\unicode[STIX]{x1D701}$ potentials. Additionally, the numerical solution of the simplified governing equations was also obtained for $\unicode[STIX]{x1D700}=O(1)$ and compared with the approximate solution, showing excellent agreement for $0\leqslant \unicode[STIX]{x1D700}\leqslant 0.3$ . Note that the dispersion coefficient primarily depends on the Deborah number, on the ratio of the half-height of the microchannel to the Debye length, and on the assumed variation in the $\unicode[STIX]{x1D701}$ potentials of the walls.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.11</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Boundary conditions ; Coefficient of variation ; Coefficients ; Deborah number ; Debye length ; Dispersion ; Electric potential ; Equilibrium flow ; Flat plates ; Fluid flow ; Fluids ; Formulas (mathematics) ; Geometry ; Height ; JFM Papers ; Lubrication ; Mathematical models ; Nonlinear equations ; Perturbation methods ; Rheological properties ; Solutes ; Thickness ; Velocity ; Viscoelastic fluids ; Viscoelastic liquids ; Viscoelasticity ; Walls ; Zeta potential</subject><ispartof>Journal of fluid mechanics, 2018-03, Vol.839, p.348-386</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-e11851cb552c9fc627fbd86cf8b25b0090c9e2b703c946ed8555ca6c0657ab2c3</citedby><cites>FETCH-LOGICAL-c299t-e11851cb552c9fc627fbd86cf8b25b0090c9e2b703c946ed8555ca6c0657ab2c3</cites><orcidid>0000-0001-5720-3878 ; 0000-0001-7510-3598 ; 0000-0001-9064-6064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018000113/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Arcos, J. C.</creatorcontrib><creatorcontrib>Méndez, F.</creatorcontrib><creatorcontrib>Bautista, E. G.</creatorcontrib><creatorcontrib>Bautista, O.</creatorcontrib><title>Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The dispersion coefficient of a passive solute in a steady-state pure electro-osmotic flow (EOF) of a viscoelastic liquid, whose rheological behaviour follows the simplified Phan-Thien–Tanner (sPTT) model, along a parallel flat plate microchannel, is studied. The walls of the microchannel are assumed to have modulated and low $\unicode[STIX]{x1D701}$ potentials, which vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient was solved using the lubrication approximation theory (LAT). The solution of the electric potential is based on the Debye–Hückel approximation for a symmetric $(z:z)$ electrolyte. The viscoelasticity of the fluid is observed to notably amplify the axial distribution of the effective dispersion coefficients due to the variation in the $\unicode[STIX]{x1D701}$ potentials of the walls. The problem was formulated for two cases: when the Debye layer thickness (EDL) was on the order of unity (thick EDL) and in the limit where the thickness of the EDL was very small compared with the height of the microchannel (thin EDL limit). Due to the coupling between the nonlinear governing equations and the sPTT fluid model, they were replaced by their approximate linearized forms and solved in the limit of $\unicode[STIX]{x1D700}\ll 1$ using the regular perturbation technique. Here $\unicode[STIX]{x1D700}$ is the amplitude of the sinusoidal function of the $\unicode[STIX]{x1D701}$ potentials. Additionally, the numerical solution of the simplified governing equations was also obtained for $\unicode[STIX]{x1D700}=O(1)$ and compared with the approximate solution, showing excellent agreement for $0\leqslant \unicode[STIX]{x1D700}\leqslant 0.3$ . Note that the dispersion coefficient primarily depends on the Deborah number, on the ratio of the half-height of the microchannel to the Debye length, and on the assumed variation in the $\unicode[STIX]{x1D701}$ potentials of the walls.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Coefficient of variation</subject><subject>Coefficients</subject><subject>Deborah number</subject><subject>Debye length</subject><subject>Dispersion</subject><subject>Electric potential</subject><subject>Equilibrium flow</subject><subject>Flat plates</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Formulas (mathematics)</subject><subject>Geometry</subject><subject>Height</subject><subject>JFM Papers</subject><subject>Lubrication</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Perturbation methods</subject><subject>Rheological properties</subject><subject>Solutes</subject><subject>Thickness</subject><subject>Velocity</subject><subject>Viscoelastic fluids</subject><subject>Viscoelastic liquids</subject><subject>Viscoelasticity</subject><subject>Walls</subject><subject>Zeta potential</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM9KAzEQxoMoWKsnXyDgUbYm2c1u9ij1LxS86Dlks0mbkk1qkm2pj-BTm1LBi6eBb37zzcwHwDVGM4xwc7fWw4wgzGYYn4AJruq2aOqKnoIJQoQUGBN0Di5iXCOES9Q2E_D9YOJGhWi8g9IrrY00yiVoHBQOKqtkCr7wcfDJSKit30GvoYBbEzNuRTzKo-lhWgU_Lle5ORgZvFwJ55SFO5MOWsyjdg-3IuyNW8KdsBZ-qSTgxqe80Ah7Cc60sFFd_dYp-Hh6fJ-_FIu359f5_aKQpG1ToTBmFMuOUiJbLWvS6K5ntdSsI7RDqEWyVaRrUCnbqlY9o5RKUUtU00Z0RJZTcHP03QT_OaqY-NqPweWVnKCSUVZVrMrU7ZHKr8QYlOabYIZ8PceIH8LmOWx-CJtjnOnilxZDF0y_VH-m__E_uNaEKQ</recordid><startdate>20180325</startdate><enddate>20180325</enddate><creator>Arcos, J. C.</creator><creator>Méndez, F.</creator><creator>Bautista, E. G.</creator><creator>Bautista, O.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5720-3878</orcidid><orcidid>https://orcid.org/0000-0001-7510-3598</orcidid><orcidid>https://orcid.org/0000-0001-9064-6064</orcidid></search><sort><creationdate>20180325</creationdate><title>Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential</title><author>Arcos, J. C. ; Méndez, F. ; Bautista, E. G. ; Bautista, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-e11851cb552c9fc627fbd86cf8b25b0090c9e2b703c946ed8555ca6c0657ab2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Coefficient of variation</topic><topic>Coefficients</topic><topic>Deborah number</topic><topic>Debye length</topic><topic>Dispersion</topic><topic>Electric potential</topic><topic>Equilibrium flow</topic><topic>Flat plates</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Formulas (mathematics)</topic><topic>Geometry</topic><topic>Height</topic><topic>JFM Papers</topic><topic>Lubrication</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Perturbation methods</topic><topic>Rheological properties</topic><topic>Solutes</topic><topic>Thickness</topic><topic>Velocity</topic><topic>Viscoelastic fluids</topic><topic>Viscoelastic liquids</topic><topic>Viscoelasticity</topic><topic>Walls</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcos, J. C.</creatorcontrib><creatorcontrib>Méndez, F.</creatorcontrib><creatorcontrib>Bautista, E. G.</creatorcontrib><creatorcontrib>Bautista, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcos, J. C.</au><au>Méndez, F.</au><au>Bautista, E. G.</au><au>Bautista, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-03-25</date><risdate>2018</risdate><volume>839</volume><spage>348</spage><epage>386</epage><pages>348-386</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The dispersion coefficient of a passive solute in a steady-state pure electro-osmotic flow (EOF) of a viscoelastic liquid, whose rheological behaviour follows the simplified Phan-Thien–Tanner (sPTT) model, along a parallel flat plate microchannel, is studied. The walls of the microchannel are assumed to have modulated and low $\unicode[STIX]{x1D701}$ potentials, which vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient was solved using the lubrication approximation theory (LAT). The solution of the electric potential is based on the Debye–Hückel approximation for a symmetric $(z:z)$ electrolyte. The viscoelasticity of the fluid is observed to notably amplify the axial distribution of the effective dispersion coefficients due to the variation in the $\unicode[STIX]{x1D701}$ potentials of the walls. The problem was formulated for two cases: when the Debye layer thickness (EDL) was on the order of unity (thick EDL) and in the limit where the thickness of the EDL was very small compared with the height of the microchannel (thin EDL limit). Due to the coupling between the nonlinear governing equations and the sPTT fluid model, they were replaced by their approximate linearized forms and solved in the limit of $\unicode[STIX]{x1D700}\ll 1$ using the regular perturbation technique. Here $\unicode[STIX]{x1D700}$ is the amplitude of the sinusoidal function of the $\unicode[STIX]{x1D701}$ potentials. Additionally, the numerical solution of the simplified governing equations was also obtained for $\unicode[STIX]{x1D700}=O(1)$ and compared with the approximate solution, showing excellent agreement for $0\leqslant \unicode[STIX]{x1D700}\leqslant 0.3$ . Note that the dispersion coefficient primarily depends on the Deborah number, on the ratio of the half-height of the microchannel to the Debye length, and on the assumed variation in the $\unicode[STIX]{x1D701}$ potentials of the walls.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.11</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-5720-3878</orcidid><orcidid>https://orcid.org/0000-0001-7510-3598</orcidid><orcidid>https://orcid.org/0000-0001-9064-6064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2018-03, Vol.839, p.348-386
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2038584484
source Cambridge University Press Journals Complete
subjects Approximation
Boundary conditions
Coefficient of variation
Coefficients
Deborah number
Debye length
Dispersion
Electric potential
Equilibrium flow
Flat plates
Fluid flow
Fluids
Formulas (mathematics)
Geometry
Height
JFM Papers
Lubrication
Mathematical models
Nonlinear equations
Perturbation methods
Rheological properties
Solutes
Thickness
Velocity
Viscoelastic fluids
Viscoelastic liquids
Viscoelasticity
Walls
Zeta potential
title Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20coefficient%20in%20an%20electro-osmotic%20flow%20of%20a%20viscoelastic%20fluid%20through%20a%20microchannel%20with%20a%20slowly%20varying%20wall%20zeta%20potential&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Arcos,%20J.%20C.&rft.date=2018-03-25&rft.volume=839&rft.spage=348&rft.epage=386&rft.pages=348-386&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.11&rft_dat=%3Cproquest_cross%3E2038584484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038584484&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_11&rfr_iscdi=true