On natural modes in moonpools and gaps in finite depth
In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430, 2001, pp. 27–50) is proposed, where the assumptions of infinite depth and infinite horizontal extent of the support are released. The fluid domain is decomposed into two subdomains: the moonpool (or the gap) and...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2018-04, Vol.840, p.530-554 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 554 |
---|---|
container_issue | |
container_start_page | 530 |
container_title | Journal of fluid mechanics |
container_volume | 840 |
creator | Molin, B. Zhang, X. Huang, H. Remy, F. |
description | In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430, 2001, pp. 27–50) is proposed, where the assumptions of infinite depth and infinite horizontal extent of the support are released. The fluid domain is decomposed into two subdomains: the moonpool (or the gap) and a lower subdomain bounded by the seafloor and by an outer cylinder where the linearized velocity potential is assumed to be nil. Eigenfunction expansions are used to describe the velocity potential in both subdomains. Garrett’s method is then applied to match the velocity potentials at the common boundary and an eigenvalue problem is formulated and solved, yielding the natural frequencies and associated modal shapes of the free surface. Applications are made, first in the case of a circular moonpool, then in the rectangular gap and moonpool cases. Based on so-called single-mode approximations, simple formulas are proposed that give the resonant frequencies. |
doi_str_mv | 10.1017/jfm.2018.69 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2038580708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_69</cupid><sourcerecordid>2038580708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-38cc20149fc9863726b1f5b0c026adb6c28ec8a2c7e080d6469e1bed9ca915973</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK6e_AMFj9J1krT5OMriFyzsRc8hTdK1ZZvUpD347826C148zTA8vPPyIHSLYYUB84e-HVYEsFgxeYYWuGKy5Kyqz9ECgJASYwKX6CqlHgBTkHyB2NYXXk9z1PtiCNalovN5CX4MYZ8K7W2x0-Pvte18N7nCunH6vEYXrd4nd3OaS_Tx_PS-fi0325e39eOmNJSyqaTCmNynkq2RglFOWIPbugEDhGnbMEOEM0ITwx0IsCwXdrhxVhotcS05XaK7Y-4Yw9fs0qT6MEefXyoCVNQCOIhM3R8pE0NK0bVqjN2g47fCoA5iVBajDmIUk5kuT7QemtjZnfsL_Y__AepqY58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038580708</pqid></control><display><type>article</type><title>On natural modes in moonpools and gaps in finite depth</title><source>Cambridge Journals</source><creator>Molin, B. ; Zhang, X. ; Huang, H. ; Remy, F.</creator><creatorcontrib>Molin, B. ; Zhang, X. ; Huang, H. ; Remy, F.</creatorcontrib><description>In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430, 2001, pp. 27–50) is proposed, where the assumptions of infinite depth and infinite horizontal extent of the support are released. The fluid domain is decomposed into two subdomains: the moonpool (or the gap) and a lower subdomain bounded by the seafloor and by an outer cylinder where the linearized velocity potential is assumed to be nil. Eigenfunction expansions are used to describe the velocity potential in both subdomains. Garrett’s method is then applied to match the velocity potentials at the common boundary and an eigenvalue problem is formulated and solved, yielding the natural frequencies and associated modal shapes of the free surface. Applications are made, first in the case of a circular moonpool, then in the rectangular gap and moonpool cases. Based on so-called single-mode approximations, simple formulas are proposed that give the resonant frequencies.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.69</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cylinder liners ; Cylinders ; Eigenfunctions ; Fluid mechanics ; Fluids ; Free surfaces ; Geometry ; International conferences ; JFM Papers ; Liquefied natural gas ; Ocean floor ; Resonant frequencies ; Velocity ; Velocity potential</subject><ispartof>Journal of fluid mechanics, 2018-04, Vol.840, p.530-554</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-38cc20149fc9863726b1f5b0c026adb6c28ec8a2c7e080d6469e1bed9ca915973</citedby><cites>FETCH-LOGICAL-c336t-38cc20149fc9863726b1f5b0c026adb6c28ec8a2c7e080d6469e1bed9ca915973</cites><orcidid>0000-0002-1378-5973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018000691/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Molin, B.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Huang, H.</creatorcontrib><creatorcontrib>Remy, F.</creatorcontrib><title>On natural modes in moonpools and gaps in finite depth</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430, 2001, pp. 27–50) is proposed, where the assumptions of infinite depth and infinite horizontal extent of the support are released. The fluid domain is decomposed into two subdomains: the moonpool (or the gap) and a lower subdomain bounded by the seafloor and by an outer cylinder where the linearized velocity potential is assumed to be nil. Eigenfunction expansions are used to describe the velocity potential in both subdomains. Garrett’s method is then applied to match the velocity potentials at the common boundary and an eigenvalue problem is formulated and solved, yielding the natural frequencies and associated modal shapes of the free surface. Applications are made, first in the case of a circular moonpool, then in the rectangular gap and moonpool cases. Based on so-called single-mode approximations, simple formulas are proposed that give the resonant frequencies.</description><subject>Cylinder liners</subject><subject>Cylinders</subject><subject>Eigenfunctions</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Free surfaces</subject><subject>Geometry</subject><subject>International conferences</subject><subject>JFM Papers</subject><subject>Liquefied natural gas</subject><subject>Ocean floor</subject><subject>Resonant frequencies</subject><subject>Velocity</subject><subject>Velocity potential</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK6e_AMFj9J1krT5OMriFyzsRc8hTdK1ZZvUpD347826C148zTA8vPPyIHSLYYUB84e-HVYEsFgxeYYWuGKy5Kyqz9ECgJASYwKX6CqlHgBTkHyB2NYXXk9z1PtiCNalovN5CX4MYZ8K7W2x0-Pvte18N7nCunH6vEYXrd4nd3OaS_Tx_PS-fi0325e39eOmNJSyqaTCmNynkq2RglFOWIPbugEDhGnbMEOEM0ITwx0IsCwXdrhxVhotcS05XaK7Y-4Yw9fs0qT6MEefXyoCVNQCOIhM3R8pE0NK0bVqjN2g47fCoA5iVBajDmIUk5kuT7QemtjZnfsL_Y__AepqY58</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Molin, B.</creator><creator>Zhang, X.</creator><creator>Huang, H.</creator><creator>Remy, F.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1378-5973</orcidid></search><sort><creationdate>20180410</creationdate><title>On natural modes in moonpools and gaps in finite depth</title><author>Molin, B. ; Zhang, X. ; Huang, H. ; Remy, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-38cc20149fc9863726b1f5b0c026adb6c28ec8a2c7e080d6469e1bed9ca915973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cylinder liners</topic><topic>Cylinders</topic><topic>Eigenfunctions</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Free surfaces</topic><topic>Geometry</topic><topic>International conferences</topic><topic>JFM Papers</topic><topic>Liquefied natural gas</topic><topic>Ocean floor</topic><topic>Resonant frequencies</topic><topic>Velocity</topic><topic>Velocity potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molin, B.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Huang, H.</creatorcontrib><creatorcontrib>Remy, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molin, B.</au><au>Zhang, X.</au><au>Huang, H.</au><au>Remy, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On natural modes in moonpools and gaps in finite depth</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>840</volume><spage>530</spage><epage>554</epage><pages>530-554</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430, 2001, pp. 27–50) is proposed, where the assumptions of infinite depth and infinite horizontal extent of the support are released. The fluid domain is decomposed into two subdomains: the moonpool (or the gap) and a lower subdomain bounded by the seafloor and by an outer cylinder where the linearized velocity potential is assumed to be nil. Eigenfunction expansions are used to describe the velocity potential in both subdomains. Garrett’s method is then applied to match the velocity potentials at the common boundary and an eigenvalue problem is formulated and solved, yielding the natural frequencies and associated modal shapes of the free surface. Applications are made, first in the case of a circular moonpool, then in the rectangular gap and moonpool cases. Based on so-called single-mode approximations, simple formulas are proposed that give the resonant frequencies.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.69</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1378-5973</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2018-04, Vol.840, p.530-554 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2038580708 |
source | Cambridge Journals |
subjects | Cylinder liners Cylinders Eigenfunctions Fluid mechanics Fluids Free surfaces Geometry International conferences JFM Papers Liquefied natural gas Ocean floor Resonant frequencies Velocity Velocity potential |
title | On natural modes in moonpools and gaps in finite depth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20natural%20modes%20in%20moonpools%20and%20gaps%20in%20finite%20depth&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Molin,%20B.&rft.date=2018-04-10&rft.volume=840&rft.spage=530&rft.epage=554&rft.pages=530-554&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.69&rft_dat=%3Cproquest_cross%3E2038580708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038580708&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_69&rfr_iscdi=true |