Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management
Precision nitrogen (N) fertilizer management has the potential to improve N fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-site environmental impact of crop production. Although technology is available to spatially vary sidedress N fertilizer applicatio...
Gespeichert in:
Veröffentlicht in: | Precision agriculture 2019-02, Vol.20 (1), p.40-55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | Precision agriculture |
container_volume | 20 |
creator | Rogovska, Natalia Laird, David A. Chiou, Chien-Ping Bond, Leonard J. |
description | Precision nitrogen (N) fertilizer management has the potential to improve N fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-site environmental impact of crop production. Although technology is available to spatially vary sidedress N fertilizer application rates within fields, sensor technology capable of measuring soil nitrate (NO
3
−
) levels in-real-time and on-the-go with sufficient accuracy to facilitate precision application of N fertilizers is lacking. The potential of Diamond-Attenuated Total internal Reflectance (D-ATR) Fourier Transform Infrared (FTIR) spectroscopy was evaluated as a soil NO
3
−
sensor. Two independent datasets were tested; (1) the field dataset consisted of 124 GPS registered soil samples collected from four agricultural fields; and (2) the laboratory dataset consisted of five different soils spiked with various amounts of KNO
3
(135 samples) and incubated in the laboratory. Spectra were collected using an Agilent 4100 Exoscan FTIR spectrometer equipped with a D-ATR cell and analyzed using partial least squares regression. Calibration R
2
values (D-ATR-FTIR predicted versus independently measured soil NO
3
−
concentrations) for the field and laboratory datasets were 0.83 and 0.90 (RMSE = 8.3 and 8.8 mg kg
−1
), respectively; and robust “leave one field/soil out” cross validation tests yielded R
2
values for the field and laboratory datasets of 0.65 and 0.83 (RMSE = 12.5 and 13.3 mg kg
−1
), respectively. The study demonstrates the potential of using D-ATR-FTIR spectroscopy for rapid field-mobile determination of soil NO
3
−
concentrations. |
doi_str_mv | 10.1007/s11119-018-9579-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2038479250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2038479250</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-afdbac36c6bea64e62546214829fa6337f00b888b2be2e2ccc472b28f887ae363</originalsourceid><addsrcrecordid>eNpFkMtKxDAUhoMoOI4-gLuA62oubZouZbzCgBtdhzRzMpOhk9QkI-jTm1LBszm3__wHPoSuKbmlhLR3iZboKkJl1TVtKU7QgjYtr6ig8rTUXDYVY404Rxcp7QkpVzVboN0DfMEQxgP4jIPF1sGwwYfQuwFwCm7A3uWoc2nApxBxBrPzYQjbb5wDttq4weVpP0YwLrngsYWYy_QHIj5or7cwmV-iM6uHBFd_eYk-nh7fVy_V-u35dXW_rkbaiFxpu-m14cKIHrSoQbCmFozWknVWC85bS0gvpexZDwyYMaZuWc-klbLVwAVfopvZd4zh8wgpq304Rl9eKka4rNuONaSo2KxKY3R-C_FfRYmaiKqZqCpE1URUEf4LByprmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038479250</pqid></control><display><type>article</type><title>Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rogovska, Natalia ; Laird, David A. ; Chiou, Chien-Ping ; Bond, Leonard J.</creator><creatorcontrib>Rogovska, Natalia ; Laird, David A. ; Chiou, Chien-Ping ; Bond, Leonard J.</creatorcontrib><description>Precision nitrogen (N) fertilizer management has the potential to improve N fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-site environmental impact of crop production. Although technology is available to spatially vary sidedress N fertilizer application rates within fields, sensor technology capable of measuring soil nitrate (NO
3
−
) levels in-real-time and on-the-go with sufficient accuracy to facilitate precision application of N fertilizers is lacking. The potential of Diamond-Attenuated Total internal Reflectance (D-ATR) Fourier Transform Infrared (FTIR) spectroscopy was evaluated as a soil NO
3
−
sensor. Two independent datasets were tested; (1) the field dataset consisted of 124 GPS registered soil samples collected from four agricultural fields; and (2) the laboratory dataset consisted of five different soils spiked with various amounts of KNO
3
(135 samples) and incubated in the laboratory. Spectra were collected using an Agilent 4100 Exoscan FTIR spectrometer equipped with a D-ATR cell and analyzed using partial least squares regression. Calibration R
2
values (D-ATR-FTIR predicted versus independently measured soil NO
3
−
concentrations) for the field and laboratory datasets were 0.83 and 0.90 (RMSE = 8.3 and 8.8 mg kg
−1
), respectively; and robust “leave one field/soil out” cross validation tests yielded R
2
values for the field and laboratory datasets of 0.65 and 0.83 (RMSE = 12.5 and 13.3 mg kg
−1
), respectively. The study demonstrates the potential of using D-ATR-FTIR spectroscopy for rapid field-mobile determination of soil NO
3
−
concentrations.</description><identifier>ISSN: 1385-2256</identifier><identifier>EISSN: 1573-1618</identifier><identifier>DOI: 10.1007/s11119-018-9579-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agricultural economics ; Agricultural land ; Agricultural management ; Agriculture ; Atmospheric Sciences ; Biomedical and Life Sciences ; Chemistry and Earth Sciences ; Computer Science ; Crop production ; Datasets ; Diamonds ; Environmental impact ; Fertilizer application ; Fertilizers ; Fourier transforms ; Infrared spectroscopy ; Laboratories ; Life Sciences ; Nitrates ; Nitrogen ; Physics ; Reflectance ; Regression analysis ; Remote Sensing/Photogrammetry ; Sensors ; Soil Science & Conservation ; Soils ; Spectroscopy ; Spectrum analysis ; Statistics for Engineering</subject><ispartof>Precision agriculture, 2019-02, Vol.20 (1), p.40-55</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Precision Agriculture is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p156t-afdbac36c6bea64e62546214829fa6337f00b888b2be2e2ccc472b28f887ae363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11119-018-9579-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11119-018-9579-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rogovska, Natalia</creatorcontrib><creatorcontrib>Laird, David A.</creatorcontrib><creatorcontrib>Chiou, Chien-Ping</creatorcontrib><creatorcontrib>Bond, Leonard J.</creatorcontrib><title>Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management</title><title>Precision agriculture</title><addtitle>Precision Agric</addtitle><description>Precision nitrogen (N) fertilizer management has the potential to improve N fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-site environmental impact of crop production. Although technology is available to spatially vary sidedress N fertilizer application rates within fields, sensor technology capable of measuring soil nitrate (NO
3
−
) levels in-real-time and on-the-go with sufficient accuracy to facilitate precision application of N fertilizers is lacking. The potential of Diamond-Attenuated Total internal Reflectance (D-ATR) Fourier Transform Infrared (FTIR) spectroscopy was evaluated as a soil NO
3
−
sensor. Two independent datasets were tested; (1) the field dataset consisted of 124 GPS registered soil samples collected from four agricultural fields; and (2) the laboratory dataset consisted of five different soils spiked with various amounts of KNO
3
(135 samples) and incubated in the laboratory. Spectra were collected using an Agilent 4100 Exoscan FTIR spectrometer equipped with a D-ATR cell and analyzed using partial least squares regression. Calibration R
2
values (D-ATR-FTIR predicted versus independently measured soil NO
3
−
concentrations) for the field and laboratory datasets were 0.83 and 0.90 (RMSE = 8.3 and 8.8 mg kg
−1
), respectively; and robust “leave one field/soil out” cross validation tests yielded R
2
values for the field and laboratory datasets of 0.65 and 0.83 (RMSE = 12.5 and 13.3 mg kg
−1
), respectively. The study demonstrates the potential of using D-ATR-FTIR spectroscopy for rapid field-mobile determination of soil NO
3
−
concentrations.</description><subject>Agricultural economics</subject><subject>Agricultural land</subject><subject>Agricultural management</subject><subject>Agriculture</subject><subject>Atmospheric Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Crop production</subject><subject>Datasets</subject><subject>Diamonds</subject><subject>Environmental impact</subject><subject>Fertilizer application</subject><subject>Fertilizers</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Physics</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Sensors</subject><subject>Soil Science & Conservation</subject><subject>Soils</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistics for Engineering</subject><issn>1385-2256</issn><issn>1573-1618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkMtKxDAUhoMoOI4-gLuA62oubZouZbzCgBtdhzRzMpOhk9QkI-jTm1LBszm3__wHPoSuKbmlhLR3iZboKkJl1TVtKU7QgjYtr6ig8rTUXDYVY404Rxcp7QkpVzVboN0DfMEQxgP4jIPF1sGwwYfQuwFwCm7A3uWoc2nApxBxBrPzYQjbb5wDttq4weVpP0YwLrngsYWYy_QHIj5or7cwmV-iM6uHBFd_eYk-nh7fVy_V-u35dXW_rkbaiFxpu-m14cKIHrSoQbCmFozWknVWC85bS0gvpexZDwyYMaZuWc-klbLVwAVfopvZd4zh8wgpq304Rl9eKka4rNuONaSo2KxKY3R-C_FfRYmaiKqZqCpE1URUEf4LByprmg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Rogovska, Natalia</creator><creator>Laird, David A.</creator><creator>Chiou, Chien-Ping</creator><creator>Bond, Leonard J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20190201</creationdate><title>Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management</title><author>Rogovska, Natalia ; Laird, David A. ; Chiou, Chien-Ping ; Bond, Leonard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-afdbac36c6bea64e62546214829fa6337f00b888b2be2e2ccc472b28f887ae363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural economics</topic><topic>Agricultural land</topic><topic>Agricultural management</topic><topic>Agriculture</topic><topic>Atmospheric Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Crop production</topic><topic>Datasets</topic><topic>Diamonds</topic><topic>Environmental impact</topic><topic>Fertilizer application</topic><topic>Fertilizers</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Physics</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Sensors</topic><topic>Soil Science & Conservation</topic><topic>Soils</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogovska, Natalia</creatorcontrib><creatorcontrib>Laird, David A.</creatorcontrib><creatorcontrib>Chiou, Chien-Ping</creatorcontrib><creatorcontrib>Bond, Leonard J.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Precision agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogovska, Natalia</au><au>Laird, David A.</au><au>Chiou, Chien-Ping</au><au>Bond, Leonard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management</atitle><jtitle>Precision agriculture</jtitle><stitle>Precision Agric</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>20</volume><issue>1</issue><spage>40</spage><epage>55</epage><pages>40-55</pages><issn>1385-2256</issn><eissn>1573-1618</eissn><abstract>Precision nitrogen (N) fertilizer management has the potential to improve N fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-site environmental impact of crop production. Although technology is available to spatially vary sidedress N fertilizer application rates within fields, sensor technology capable of measuring soil nitrate (NO
3
−
) levels in-real-time and on-the-go with sufficient accuracy to facilitate precision application of N fertilizers is lacking. The potential of Diamond-Attenuated Total internal Reflectance (D-ATR) Fourier Transform Infrared (FTIR) spectroscopy was evaluated as a soil NO
3
−
sensor. Two independent datasets were tested; (1) the field dataset consisted of 124 GPS registered soil samples collected from four agricultural fields; and (2) the laboratory dataset consisted of five different soils spiked with various amounts of KNO
3
(135 samples) and incubated in the laboratory. Spectra were collected using an Agilent 4100 Exoscan FTIR spectrometer equipped with a D-ATR cell and analyzed using partial least squares regression. Calibration R
2
values (D-ATR-FTIR predicted versus independently measured soil NO
3
−
concentrations) for the field and laboratory datasets were 0.83 and 0.90 (RMSE = 8.3 and 8.8 mg kg
−1
), respectively; and robust “leave one field/soil out” cross validation tests yielded R
2
values for the field and laboratory datasets of 0.65 and 0.83 (RMSE = 12.5 and 13.3 mg kg
−1
), respectively. The study demonstrates the potential of using D-ATR-FTIR spectroscopy for rapid field-mobile determination of soil NO
3
−
concentrations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11119-018-9579-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2256 |
ispartof | Precision agriculture, 2019-02, Vol.20 (1), p.40-55 |
issn | 1385-2256 1573-1618 |
language | eng |
recordid | cdi_proquest_journals_2038479250 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agricultural economics Agricultural land Agricultural management Agriculture Atmospheric Sciences Biomedical and Life Sciences Chemistry and Earth Sciences Computer Science Crop production Datasets Diamonds Environmental impact Fertilizer application Fertilizers Fourier transforms Infrared spectroscopy Laboratories Life Sciences Nitrates Nitrogen Physics Reflectance Regression analysis Remote Sensing/Photogrammetry Sensors Soil Science & Conservation Soils Spectroscopy Spectrum analysis Statistics for Engineering |
title | Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20field%20mobile%20soil%20nitrate%20sensor%20technology%20to%20facilitate%20precision%20fertilizer%20management&rft.jtitle=Precision%20agriculture&rft.au=Rogovska,%20Natalia&rft.date=2019-02-01&rft.volume=20&rft.issue=1&rft.spage=40&rft.epage=55&rft.pages=40-55&rft.issn=1385-2256&rft.eissn=1573-1618&rft_id=info:doi/10.1007/s11119-018-9579-0&rft_dat=%3Cproquest_sprin%3E2038479250%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038479250&rft_id=info:pmid/&rfr_iscdi=true |