Eudoxus Meets Cayley

During the classical Greek civilization in the period 600-300 B.C.E., geometry was organized and systemized into today's formal mathematics, culminating in Euclid's Elements. When Euclid wrote the Elements, he was able to incorporate Eudoxus's brilliant resolution of the crisis throug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2003-12, Vol.110 (10), p.912-927
Hauptverfasser: Chandler, Richard E., Meyer, Carl D., Rose, Nicholas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 10
container_start_page 912
container_title The American mathematical monthly
container_volume 110
creator Chandler, Richard E.
Meyer, Carl D.
Rose, Nicholas J.
description During the classical Greek civilization in the period 600-300 B.C.E., geometry was organized and systemized into today's formal mathematics, culminating in Euclid's Elements. When Euclid wrote the Elements, he was able to incorporate Eudoxus's brilliant resolution of the crisis through the development of proportional lengths and similar triangles. Chandler et al discuss an answer to a question through the mathematics of Cayley.
doi_str_mv 10.1080/00029890.2003.11920031
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_203804990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3647962</jstor_id><sourcerecordid>3647962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1910-aa39d5ea6eef7cff7922f83b138ca87ed12802997b16397371fcc7fa2b6c11693</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKs3z1JEj7tOkt1N5lhK_YCKFz2HNJtAy7apyS7a_94s26I3T8PA77158wi5oZBTkPAAAAwlQs4AeE4p9pOekBFFDhmgYKdk1ENZT52TixjXaYWyYCNyPe9q_93Fyau1bZzM9L6x-0ty5nQT7dVhjsnH4_x99pwt3p5eZtNFZihSyLTmWJdWV9Y6YZwTyJiTfEm5NFoKW1MmUzQUS1pxFFxQZ4xwmi0rQ2mFfExuB99d8J-dja1a-y5s00nFgEsoECFB1QCZ4GMM1qldWG102CsKqi9AHQtQ_ePqWEAS3h_cdTS6cUFvzSr-qsuixLKQibsbuHVsffjrzjgIxatCYMUSNh2w1db5sNFfPjS1alNhPhy9-T-RfgAFXndF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203804990</pqid></control><display><type>article</type><title>Eudoxus Meets Cayley</title><source>JSTOR Mathematics &amp; Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Chandler, Richard E. ; Meyer, Carl D. ; Rose, Nicholas J.</creator><creatorcontrib>Chandler, Richard E. ; Meyer, Carl D. ; Rose, Nicholas J.</creatorcontrib><description>During the classical Greek civilization in the period 600-300 B.C.E., geometry was organized and systemized into today's formal mathematics, culminating in Euclid's Elements. When Euclid wrote the Elements, he was able to incorporate Eudoxus's brilliant resolution of the crisis through the development of proportional lengths and similar triangles. Chandler et al discuss an answer to a question through the mathematics of Cayley.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2003.11920031</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington, DC: Taylor &amp; Francis</publisher><subject>Algebra ; Cartesian planes ; Centroids ; Coordinate systems ; Eigenvalues ; Exact sciences and technology ; General, history and biography ; Geometry ; History and philosophy of mathematics ; Linear and multilinear algebra, matrix theory ; Mathematical problems ; Mathematical theorems ; Mathematicians ; Mathematics ; Matrices ; Natural numbers ; Sciences and techniques of general use ; Triangles</subject><ispartof>The American mathematical monthly, 2003-12, Vol.110 (10), p.912-927</ispartof><rights>Copyright Taylor &amp; Francis</rights><rights>Copyright 2003 The Mathematical Association of America</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Mathematical Association Of America Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1910-aa39d5ea6eef7cff7922f83b138ca87ed12802997b16397371fcc7fa2b6c11693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3647962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3647962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15459548$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandler, Richard E.</creatorcontrib><creatorcontrib>Meyer, Carl D.</creatorcontrib><creatorcontrib>Rose, Nicholas J.</creatorcontrib><title>Eudoxus Meets Cayley</title><title>The American mathematical monthly</title><description>During the classical Greek civilization in the period 600-300 B.C.E., geometry was organized and systemized into today's formal mathematics, culminating in Euclid's Elements. When Euclid wrote the Elements, he was able to incorporate Eudoxus's brilliant resolution of the crisis through the development of proportional lengths and similar triangles. Chandler et al discuss an answer to a question through the mathematics of Cayley.</description><subject>Algebra</subject><subject>Cartesian planes</subject><subject>Centroids</subject><subject>Coordinate systems</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>General, history and biography</subject><subject>Geometry</subject><subject>History and philosophy of mathematics</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical problems</subject><subject>Mathematical theorems</subject><subject>Mathematicians</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Natural numbers</subject><subject>Sciences and techniques of general use</subject><subject>Triangles</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM1LAzEQxYMoWKs3z1JEj7tOkt1N5lhK_YCKFz2HNJtAy7apyS7a_94s26I3T8PA77158wi5oZBTkPAAAAwlQs4AeE4p9pOekBFFDhmgYKdk1ENZT52TixjXaYWyYCNyPe9q_93Fyau1bZzM9L6x-0ty5nQT7dVhjsnH4_x99pwt3p5eZtNFZihSyLTmWJdWV9Y6YZwTyJiTfEm5NFoKW1MmUzQUS1pxFFxQZ4xwmi0rQ2mFfExuB99d8J-dja1a-y5s00nFgEsoECFB1QCZ4GMM1qldWG102CsKqi9AHQtQ_ePqWEAS3h_cdTS6cUFvzSr-qsuixLKQibsbuHVsffjrzjgIxatCYMUSNh2w1db5sNFfPjS1alNhPhy9-T-RfgAFXndF</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Chandler, Richard E.</creator><creator>Meyer, Carl D.</creator><creator>Rose, Nicholas J.</creator><general>Taylor &amp; Francis</general><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20031201</creationdate><title>Eudoxus Meets Cayley</title><author>Chandler, Richard E. ; Meyer, Carl D. ; Rose, Nicholas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1910-aa39d5ea6eef7cff7922f83b138ca87ed12802997b16397371fcc7fa2b6c11693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Cartesian planes</topic><topic>Centroids</topic><topic>Coordinate systems</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>General, history and biography</topic><topic>Geometry</topic><topic>History and philosophy of mathematics</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical problems</topic><topic>Mathematical theorems</topic><topic>Mathematicians</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Natural numbers</topic><topic>Sciences and techniques of general use</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandler, Richard E.</creatorcontrib><creatorcontrib>Meyer, Carl D.</creatorcontrib><creatorcontrib>Rose, Nicholas J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandler, Richard E.</au><au>Meyer, Carl D.</au><au>Rose, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eudoxus Meets Cayley</atitle><jtitle>The American mathematical monthly</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>110</volume><issue>10</issue><spage>912</spage><epage>927</epage><pages>912-927</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>During the classical Greek civilization in the period 600-300 B.C.E., geometry was organized and systemized into today's formal mathematics, culminating in Euclid's Elements. When Euclid wrote the Elements, he was able to incorporate Eudoxus's brilliant resolution of the crisis through the development of proportional lengths and similar triangles. Chandler et al discuss an answer to a question through the mathematics of Cayley.</abstract><cop>Washington, DC</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00029890.2003.11920031</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2003-12, Vol.110 (10), p.912-927
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_203804990
source JSTOR Mathematics & Statistics; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; JSTOR
subjects Algebra
Cartesian planes
Centroids
Coordinate systems
Eigenvalues
Exact sciences and technology
General, history and biography
Geometry
History and philosophy of mathematics
Linear and multilinear algebra, matrix theory
Mathematical problems
Mathematical theorems
Mathematicians
Mathematics
Matrices
Natural numbers
Sciences and techniques of general use
Triangles
title Eudoxus Meets Cayley
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eudoxus%20Meets%20Cayley&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Chandler,%20Richard%20E.&rft.date=2003-12-01&rft.volume=110&rft.issue=10&rft.spage=912&rft.epage=927&rft.pages=912-927&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.1080/00029890.2003.11920031&rft_dat=%3Cjstor_proqu%3E3647962%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203804990&rft_id=info:pmid/&rft_jstor_id=3647962&rfr_iscdi=true