Nitrogen oligotrophication in northern hardwood forests
While much research over the past 30 years has focused on the deleterious effects of excess N on forests and associated aquatic ecosystems, recent declines in atmospheric N deposition and unexplained declines in N export from these ecosystems have raised new concerns about N oligotrophication, limit...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2018-12, Vol.141 (3), p.523-539 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 3 |
container_start_page | 523 |
container_title | Biogeochemistry |
container_volume | 141 |
creator | Groffman, Peter M. Driscoll, Charles T. Durán, Jorge Campbell, John L. Christenson, Lynn M. Fahey, Timothy J. Fisk, Melany C. Fuss, Colin Likens, Gene E. Lovett, Gary Rustad, Lindsey Templer, Pamela H. |
description | While much research over the past 30 years has focused on the deleterious effects of excess N on forests and associated aquatic ecosystems, recent declines in atmospheric N deposition and unexplained declines in N export from these ecosystems have raised new concerns about N oligotrophication, limitations of forest productivity, and the capacity for forests to respond dynamically to disturbance and environmental change. Here we show multiple data streams from long-term ecological research at the Hubbard Brook Experimental Forest in New Hampshire, USA suggesting that N oligotrophication in forest soils is driven by increased carbon flow from the atmosphere through soils that stimulates microbial immobilization of N and decreases available N for plants. Decreased available N in soils can result in increased N resorption by trees, which reduces litterfall N input to soils, further limiting available N supply and leading to further declines in soil N availability. Moreover, N oligotrophication has been likely exacerbated by changes in climate that increase the length of the growing season and decrease production of available N by mineralization during both winter and spring. These results suggest a need to re-evaluate the nature and extent of N cycling in temperate forests and assess how changing conditions will influence forest ecosystem response to multiple, dynamic stresses of global environmental change. |
doi_str_mv | 10.1007/s10533-018-0445-y |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2037855540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48721485</jstor_id><sourcerecordid>48721485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-48182e50c83cf30b0e3c4c2e1e15df5bcb757f082ae2d8b9e3fc9cb8992b05583</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wIUw4Dp687hNZinFFxTdKLgLM5mknVKTmkyR_nsjI7pzde_ifOfAR8g5gysGoK4zAxSCAtMUpES6PyAThkpQZPh2SCbAZppynIljcpLzGgBqBWJC1FM_pLh0oYqbfhnLv131thn6GKo-VCGmYeVSqFZN6j5j7Cofk8tDPiVHvtlkd_Zzp-T17vZl_kAXz_eP85sFtULogUrNNHcIVgvrBbTghJWWO-YYdh5b2ypUHjRvHO90WzvhbW1bXde8BUQtpuRy7N2m-LEry2YddymUScNBKI2IEkqKjSmbYs7JebNN_XuT9oaB-fZjRj-m-DHffsy-MHxkcsmGpUt_zf9BFyO0zkNMvytSK86kRvEF1yxyyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037855540</pqid></control><display><type>article</type><title>Nitrogen oligotrophication in northern hardwood forests</title><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Groffman, Peter M. ; Driscoll, Charles T. ; Durán, Jorge ; Campbell, John L. ; Christenson, Lynn M. ; Fahey, Timothy J. ; Fisk, Melany C. ; Fuss, Colin ; Likens, Gene E. ; Lovett, Gary ; Rustad, Lindsey ; Templer, Pamela H.</creator><creatorcontrib>Groffman, Peter M. ; Driscoll, Charles T. ; Durán, Jorge ; Campbell, John L. ; Christenson, Lynn M. ; Fahey, Timothy J. ; Fisk, Melany C. ; Fuss, Colin ; Likens, Gene E. ; Lovett, Gary ; Rustad, Lindsey ; Templer, Pamela H.</creatorcontrib><description>While much research over the past 30 years has focused on the deleterious effects of excess N on forests and associated aquatic ecosystems, recent declines in atmospheric N deposition and unexplained declines in N export from these ecosystems have raised new concerns about N oligotrophication, limitations of forest productivity, and the capacity for forests to respond dynamically to disturbance and environmental change. Here we show multiple data streams from long-term ecological research at the Hubbard Brook Experimental Forest in New Hampshire, USA suggesting that N oligotrophication in forest soils is driven by increased carbon flow from the atmosphere through soils that stimulates microbial immobilization of N and decreases available N for plants. Decreased available N in soils can result in increased N resorption by trees, which reduces litterfall N input to soils, further limiting available N supply and leading to further declines in soil N availability. Moreover, N oligotrophication has been likely exacerbated by changes in climate that increase the length of the growing season and decrease production of available N by mineralization during both winter and spring. These results suggest a need to re-evaluate the nature and extent of N cycling in temperate forests and assess how changing conditions will influence forest ecosystem response to multiple, dynamic stresses of global environmental change.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-018-0445-y</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Aquatic ecosystems ; Biogeosciences ; Capacity ; Climate change ; Data transmission ; Earth and Environmental Science ; Earth Sciences ; Ecological research ; Ecosystem disturbance ; Ecosystems ; Environmental changes ; Environmental Chemistry ; Forest ecosystems ; Forest productivity ; Forest soils ; Forests ; Growing season ; Immobilization ; Life Sciences ; Litter fall ; Microorganisms ; Mineralization ; Nitrogen ; ORIGINAL PAPERS ; Soil ; Streams ; Temperate forests ; Terrestrial ecosystems</subject><ispartof>Biogeochemistry, 2018-12, Vol.141 (3), p.523-539</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Biogeochemistry is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-48182e50c83cf30b0e3c4c2e1e15df5bcb757f082ae2d8b9e3fc9cb8992b05583</citedby><cites>FETCH-LOGICAL-c338t-48182e50c83cf30b0e3c4c2e1e15df5bcb757f082ae2d8b9e3fc9cb8992b05583</cites><orcidid>0000-0001-8371-6255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48721485$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48721485$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,41469,42538,51300,57998,58231</link.rule.ids></links><search><creatorcontrib>Groffman, Peter M.</creatorcontrib><creatorcontrib>Driscoll, Charles T.</creatorcontrib><creatorcontrib>Durán, Jorge</creatorcontrib><creatorcontrib>Campbell, John L.</creatorcontrib><creatorcontrib>Christenson, Lynn M.</creatorcontrib><creatorcontrib>Fahey, Timothy J.</creatorcontrib><creatorcontrib>Fisk, Melany C.</creatorcontrib><creatorcontrib>Fuss, Colin</creatorcontrib><creatorcontrib>Likens, Gene E.</creatorcontrib><creatorcontrib>Lovett, Gary</creatorcontrib><creatorcontrib>Rustad, Lindsey</creatorcontrib><creatorcontrib>Templer, Pamela H.</creatorcontrib><title>Nitrogen oligotrophication in northern hardwood forests</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>While much research over the past 30 years has focused on the deleterious effects of excess N on forests and associated aquatic ecosystems, recent declines in atmospheric N deposition and unexplained declines in N export from these ecosystems have raised new concerns about N oligotrophication, limitations of forest productivity, and the capacity for forests to respond dynamically to disturbance and environmental change. Here we show multiple data streams from long-term ecological research at the Hubbard Brook Experimental Forest in New Hampshire, USA suggesting that N oligotrophication in forest soils is driven by increased carbon flow from the atmosphere through soils that stimulates microbial immobilization of N and decreases available N for plants. Decreased available N in soils can result in increased N resorption by trees, which reduces litterfall N input to soils, further limiting available N supply and leading to further declines in soil N availability. Moreover, N oligotrophication has been likely exacerbated by changes in climate that increase the length of the growing season and decrease production of available N by mineralization during both winter and spring. These results suggest a need to re-evaluate the nature and extent of N cycling in temperate forests and assess how changing conditions will influence forest ecosystem response to multiple, dynamic stresses of global environmental change.</description><subject>Aquatic ecosystems</subject><subject>Biogeosciences</subject><subject>Capacity</subject><subject>Climate change</subject><subject>Data transmission</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecological research</subject><subject>Ecosystem disturbance</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Environmental Chemistry</subject><subject>Forest ecosystems</subject><subject>Forest productivity</subject><subject>Forest soils</subject><subject>Forests</subject><subject>Growing season</subject><subject>Immobilization</subject><subject>Life Sciences</subject><subject>Litter fall</subject><subject>Microorganisms</subject><subject>Mineralization</subject><subject>Nitrogen</subject><subject>ORIGINAL PAPERS</subject><subject>Soil</subject><subject>Streams</subject><subject>Temperate forests</subject><subject>Terrestrial ecosystems</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wIUw4Dp687hNZinFFxTdKLgLM5mknVKTmkyR_nsjI7pzde_ifOfAR8g5gysGoK4zAxSCAtMUpES6PyAThkpQZPh2SCbAZppynIljcpLzGgBqBWJC1FM_pLh0oYqbfhnLv131thn6GKo-VCGmYeVSqFZN6j5j7Cofk8tDPiVHvtlkd_Zzp-T17vZl_kAXz_eP85sFtULogUrNNHcIVgvrBbTghJWWO-YYdh5b2ypUHjRvHO90WzvhbW1bXde8BUQtpuRy7N2m-LEry2YddymUScNBKI2IEkqKjSmbYs7JebNN_XuT9oaB-fZjRj-m-DHffsy-MHxkcsmGpUt_zf9BFyO0zkNMvytSK86kRvEF1yxyyA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Groffman, Peter M.</creator><creator>Driscoll, Charles T.</creator><creator>Durán, Jorge</creator><creator>Campbell, John L.</creator><creator>Christenson, Lynn M.</creator><creator>Fahey, Timothy J.</creator><creator>Fisk, Melany C.</creator><creator>Fuss, Colin</creator><creator>Likens, Gene E.</creator><creator>Lovett, Gary</creator><creator>Rustad, Lindsey</creator><creator>Templer, Pamela H.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8371-6255</orcidid></search><sort><creationdate>20181201</creationdate><title>Nitrogen oligotrophication in northern hardwood forests</title><author>Groffman, Peter M. ; Driscoll, Charles T. ; Durán, Jorge ; Campbell, John L. ; Christenson, Lynn M. ; Fahey, Timothy J. ; Fisk, Melany C. ; Fuss, Colin ; Likens, Gene E. ; Lovett, Gary ; Rustad, Lindsey ; Templer, Pamela H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-48182e50c83cf30b0e3c4c2e1e15df5bcb757f082ae2d8b9e3fc9cb8992b05583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic ecosystems</topic><topic>Biogeosciences</topic><topic>Capacity</topic><topic>Climate change</topic><topic>Data transmission</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecological research</topic><topic>Ecosystem disturbance</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Environmental Chemistry</topic><topic>Forest ecosystems</topic><topic>Forest productivity</topic><topic>Forest soils</topic><topic>Forests</topic><topic>Growing season</topic><topic>Immobilization</topic><topic>Life Sciences</topic><topic>Litter fall</topic><topic>Microorganisms</topic><topic>Mineralization</topic><topic>Nitrogen</topic><topic>ORIGINAL PAPERS</topic><topic>Soil</topic><topic>Streams</topic><topic>Temperate forests</topic><topic>Terrestrial ecosystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groffman, Peter M.</creatorcontrib><creatorcontrib>Driscoll, Charles T.</creatorcontrib><creatorcontrib>Durán, Jorge</creatorcontrib><creatorcontrib>Campbell, John L.</creatorcontrib><creatorcontrib>Christenson, Lynn M.</creatorcontrib><creatorcontrib>Fahey, Timothy J.</creatorcontrib><creatorcontrib>Fisk, Melany C.</creatorcontrib><creatorcontrib>Fuss, Colin</creatorcontrib><creatorcontrib>Likens, Gene E.</creatorcontrib><creatorcontrib>Lovett, Gary</creatorcontrib><creatorcontrib>Rustad, Lindsey</creatorcontrib><creatorcontrib>Templer, Pamela H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groffman, Peter M.</au><au>Driscoll, Charles T.</au><au>Durán, Jorge</au><au>Campbell, John L.</au><au>Christenson, Lynn M.</au><au>Fahey, Timothy J.</au><au>Fisk, Melany C.</au><au>Fuss, Colin</au><au>Likens, Gene E.</au><au>Lovett, Gary</au><au>Rustad, Lindsey</au><au>Templer, Pamela H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen oligotrophication in northern hardwood forests</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>141</volume><issue>3</issue><spage>523</spage><epage>539</epage><pages>523-539</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>While much research over the past 30 years has focused on the deleterious effects of excess N on forests and associated aquatic ecosystems, recent declines in atmospheric N deposition and unexplained declines in N export from these ecosystems have raised new concerns about N oligotrophication, limitations of forest productivity, and the capacity for forests to respond dynamically to disturbance and environmental change. Here we show multiple data streams from long-term ecological research at the Hubbard Brook Experimental Forest in New Hampshire, USA suggesting that N oligotrophication in forest soils is driven by increased carbon flow from the atmosphere through soils that stimulates microbial immobilization of N and decreases available N for plants. Decreased available N in soils can result in increased N resorption by trees, which reduces litterfall N input to soils, further limiting available N supply and leading to further declines in soil N availability. Moreover, N oligotrophication has been likely exacerbated by changes in climate that increase the length of the growing season and decrease production of available N by mineralization during both winter and spring. These results suggest a need to re-evaluate the nature and extent of N cycling in temperate forests and assess how changing conditions will influence forest ecosystem response to multiple, dynamic stresses of global environmental change.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-018-0445-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8371-6255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2018-12, Vol.141 (3), p.523-539 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_journals_2037855540 |
source | SpringerLink Journals; Jstor Complete Legacy |
subjects | Aquatic ecosystems Biogeosciences Capacity Climate change Data transmission Earth and Environmental Science Earth Sciences Ecological research Ecosystem disturbance Ecosystems Environmental changes Environmental Chemistry Forest ecosystems Forest productivity Forest soils Forests Growing season Immobilization Life Sciences Litter fall Microorganisms Mineralization Nitrogen ORIGINAL PAPERS Soil Streams Temperate forests Terrestrial ecosystems |
title | Nitrogen oligotrophication in northern hardwood forests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20oligotrophication%20in%20northern%20hardwood%20forests&rft.jtitle=Biogeochemistry&rft.au=Groffman,%20Peter%20M.&rft.date=2018-12-01&rft.volume=141&rft.issue=3&rft.spage=523&rft.epage=539&rft.pages=523-539&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-018-0445-y&rft_dat=%3Cjstor_proqu%3E48721485%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037855540&rft_id=info:pmid/&rft_jstor_id=48721485&rfr_iscdi=true |