Learning Rates of Least-Square Regularized Regression

This paper considers the regularized learning algorithm associated with the least-square loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2006-04, Vol.6 (2), p.171-192
Hauptverfasser: Wu, Qiang, Ying, Yiming, Zhou, Ding-Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 171
container_title Foundations of computational mathematics
container_volume 6
creator Wu, Qiang
Ying, Yiming
Zhou, Ding-Xuan
description This paper considers the regularized learning algorithm associated with the least-square loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates. The rates depend on the approximation property and on the capacity of the reproducing kernel Hilbert space measured by covering numbers. When the kernel is C[inf] and the regression function lies in the corresponding reproducing kernel Hilbert space, the rate is m[zeta] with [zeta] arbitrarily close to 1, regardless of the variance of the bounded probability distribution. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10208-004-0155-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_203763970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A154722423</galeid><sourcerecordid>A154722423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-566f63bf410e377b9b8881f6f811f502533525862a855c93fb20e844f563945e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_wLvinRfRc5KcNL0cw4_BQNj0OqQ1KR2znUkL6q-3o-LVeTk8vC88jF0j3CFAfp8QBBgOoDggES9O2Aw1EpfSyNP_nNM5u0hpByNUoJoxWnsX26ats43rfcq6kI2f1PPt5-Cizza-HvYuNj_-_ZijT6np2kt2Ftw--au_O2dvjw-vy2e-fnlaLRdrXimknpPWQcsyKAQv87wsSmMMBh0MYiAQJCUJMlo4Q1QVMpQCvFEqkJaFIi_n7GbqPcTuc_Cpt7tuiO04aQXIfKRyGKHbCard3tumrbq291997YaU7Gq7sQsklQuhhBxZnNgqdilFH-whNh8uflsEexRpJ5F2FGmPIm0hfwFXa2Js</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203763970</pqid></control><display><type>article</type><title>Learning Rates of Least-Square Regularized Regression</title><source>SpringerLink Journals</source><creator>Wu, Qiang ; Ying, Yiming ; Zhou, Ding-Xuan</creator><creatorcontrib>Wu, Qiang ; Ying, Yiming ; Zhou, Ding-Xuan</creatorcontrib><description>This paper considers the regularized learning algorithm associated with the least-square loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates. The rates depend on the approximation property and on the capacity of the reproducing kernel Hilbert space measured by covering numbers. When the kernel is C[inf] and the regression function lies in the corresponding reproducing kernel Hilbert space, the rate is m[zeta] with [zeta] arbitrarily close to 1, regardless of the variance of the bounded probability distribution. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-004-0155-9</identifier><identifier>CODEN: FCMOA3</identifier><language>eng</language><publisher>New York: Springer</publisher><subject>Algorithms ; Analysis ; Error analysis ; Hilbert space ; Least squares ; Measurement ; Regression analysis</subject><ispartof>Foundations of computational mathematics, 2006-04, Vol.6 (2), p.171-192</ispartof><rights>COPYRIGHT 2006 Springer</rights><rights>Springer 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-566f63bf410e377b9b8881f6f811f502533525862a855c93fb20e844f563945e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Ying, Yiming</creatorcontrib><creatorcontrib>Zhou, Ding-Xuan</creatorcontrib><title>Learning Rates of Least-Square Regularized Regression</title><title>Foundations of computational mathematics</title><description>This paper considers the regularized learning algorithm associated with the least-square loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates. The rates depend on the approximation property and on the capacity of the reproducing kernel Hilbert space measured by covering numbers. When the kernel is C[inf] and the regression function lies in the corresponding reproducing kernel Hilbert space, the rate is m[zeta] with [zeta] arbitrarily close to 1, regardless of the variance of the bounded probability distribution. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Error analysis</subject><subject>Hilbert space</subject><subject>Least squares</subject><subject>Measurement</subject><subject>Regression analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_wLvinRfRc5KcNL0cw4_BQNj0OqQ1KR2znUkL6q-3o-LVeTk8vC88jF0j3CFAfp8QBBgOoDggES9O2Aw1EpfSyNP_nNM5u0hpByNUoJoxWnsX26ats43rfcq6kI2f1PPt5-Cizza-HvYuNj_-_ZijT6np2kt2Ftw--au_O2dvjw-vy2e-fnlaLRdrXimknpPWQcsyKAQv87wsSmMMBh0MYiAQJCUJMlo4Q1QVMpQCvFEqkJaFIi_n7GbqPcTuc_Cpt7tuiO04aQXIfKRyGKHbCard3tumrbq291997YaU7Gq7sQsklQuhhBxZnNgqdilFH-whNh8uflsEexRpJ5F2FGmPIm0hfwFXa2Js</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Wu, Qiang</creator><creator>Ying, Yiming</creator><creator>Zhou, Ding-Xuan</creator><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060401</creationdate><title>Learning Rates of Least-Square Regularized Regression</title><author>Wu, Qiang ; Ying, Yiming ; Zhou, Ding-Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-566f63bf410e377b9b8881f6f811f502533525862a855c93fb20e844f563945e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Error analysis</topic><topic>Hilbert space</topic><topic>Least squares</topic><topic>Measurement</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Ying, Yiming</creatorcontrib><creatorcontrib>Zhou, Ding-Xuan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qiang</au><au>Ying, Yiming</au><au>Zhou, Ding-Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Rates of Least-Square Regularized Regression</atitle><jtitle>Foundations of computational mathematics</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>6</volume><issue>2</issue><spage>171</spage><epage>192</epage><pages>171-192</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><coden>FCMOA3</coden><abstract>This paper considers the regularized learning algorithm associated with the least-square loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates. The rates depend on the approximation property and on the capacity of the reproducing kernel Hilbert space measured by covering numbers. When the kernel is C[inf] and the regression function lies in the corresponding reproducing kernel Hilbert space, the rate is m[zeta] with [zeta] arbitrarily close to 1, regardless of the variance of the bounded probability distribution. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer</pub><doi>10.1007/s10208-004-0155-9</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2006-04, Vol.6 (2), p.171-192
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_203763970
source SpringerLink Journals
subjects Algorithms
Analysis
Error analysis
Hilbert space
Least squares
Measurement
Regression analysis
title Learning Rates of Least-Square Regularized Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Rates%20of%20Least-Square%20Regularized%20Regression&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Wu,%20Qiang&rft.date=2006-04-01&rft.volume=6&rft.issue=2&rft.spage=171&rft.epage=192&rft.pages=171-192&rft.issn=1615-3375&rft.eissn=1615-3383&rft.coden=FCMOA3&rft_id=info:doi/10.1007/s10208-004-0155-9&rft_dat=%3Cgale_proqu%3EA154722423%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203763970&rft_id=info:pmid/&rft_galeid=A154722423&rfr_iscdi=true