Hybrid Average Modeling of Three-Phase Dual Active Bridge Converters for Stability Analysis
The three-phase dual active bridge (3p-DAB) converter is widely addressed in emerging power systems applications such as solid-state transformer and dc microgrids. Its successful integration requires accurate modeling of its small-signal characteristics. Due to its dc-ac-dc structure, the DAB conver...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2018-08, Vol.33 (4), p.2020-2029 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2029 |
---|---|
container_issue | 4 |
container_start_page | 2020 |
container_title | IEEE transactions on power delivery |
container_volume | 33 |
creator | Berger, Maxime Kocar, Ilhan Fortin-Blanchette, Handy Lavertu, Carl |
description | The three-phase dual active bridge (3p-DAB) converter is widely addressed in emerging power systems applications such as solid-state transformer and dc microgrids. Its successful integration requires accurate modeling of its small-signal characteristics. Due to its dc-ac-dc structure, the DAB converter brings many challenges to small-signal modeling. The state-space averaging (SSA) has been the first proposed methodology to approximate the control-to-output and line-to-output transfer functions of the 3p-DAB. However, as shown in this paper, SSA is not precise for the stability analysis of 3p-DAB converters. A generalized state-space averaging (GSSA) model based on the dynamic phasor concept is developed in this paper for the Y-Δ 3p-DAB. A hybrid SSA and GSSA model representation is then proposed for the evaluation of all the converter transfer functions. The developed models are validated with detailed time-domain switch-level simulations in an electromagnetic transient-type (EMT-type) program. They are also used for the accelerated stability prediction in an EMT-type program. |
doi_str_mv | 10.1109/TPWRD.2018.2817878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2037345403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8320830</ieee_id><sourcerecordid>2037345403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4c85611e526ff2871e62f3581e741c4c7d3bccdc4441b12d758acec9b3eeb19a3</originalsourceid><addsrcrecordid>eNo9kE9PwjAYhxujiYh-Ab008Tzsv9HuOEHFBCNRjAcPTde9g5LJsB0k-_YWIZ7ey_P88uZB6JqSAaUku5vPPt_GA0aoGjBFpZLqBPVoxmUiGFGnqEeUShOVSXmOLkJYEUIEyUgPfU26wrsS5zvwZgH4pSmhdusFbio8X3qAZLY0AfB4a2qc29btAN9HIaKjZh2lFnzAVePxe2sKV7u2w_na1F1w4RKdVaYOcHW8ffTx-DAfTZLp69PzKJ8mlmVpmwir0iGlkLJhVTElKQxZxVNFQQpqhZUlL6wtrRCCFpSVMlXGgs0KDlDQzPA-uj3sbnzzs4XQ6lWz9fGJoBnhkotUEB4pdqCsb0LwUOmNd9_Gd5oSvY-o_yLqfUR9jBilm4PkAOBfUDxG5YT_Ag9qbgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037345403</pqid></control><display><type>article</type><title>Hybrid Average Modeling of Three-Phase Dual Active Bridge Converters for Stability Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Berger, Maxime ; Kocar, Ilhan ; Fortin-Blanchette, Handy ; Lavertu, Carl</creator><creatorcontrib>Berger, Maxime ; Kocar, Ilhan ; Fortin-Blanchette, Handy ; Lavertu, Carl</creatorcontrib><description>The three-phase dual active bridge (3p-DAB) converter is widely addressed in emerging power systems applications such as solid-state transformer and dc microgrids. Its successful integration requires accurate modeling of its small-signal characteristics. Due to its dc-ac-dc structure, the DAB converter brings many challenges to small-signal modeling. The state-space averaging (SSA) has been the first proposed methodology to approximate the control-to-output and line-to-output transfer functions of the 3p-DAB. However, as shown in this paper, SSA is not precise for the stability analysis of 3p-DAB converters. A generalized state-space averaging (GSSA) model based on the dynamic phasor concept is developed in this paper for the Y-Δ 3p-DAB. A hybrid SSA and GSSA model representation is then proposed for the evaluation of all the converter transfer functions. The developed models are validated with detailed time-domain switch-level simulations in an electromagnetic transient-type (EMT-type) program. They are also used for the accelerated stability prediction in an EMT-type program.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2018.2817878</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>bidirectional converters ; Biological system modeling ; Bridge circuits ; Computer simulation ; dc-dc conversion ; Distributed resources ; dual active bridge ; dynamic phasor ; Electric bridges ; Electric converters ; Electric power grids ; electromagnetic transients program ; generalized averaging ; Mathematical model ; Mathematical models ; Modelling ; Power system stability ; Stability analysis ; state-space averaging ; Transfer functions ; Voltage control</subject><ispartof>IEEE transactions on power delivery, 2018-08, Vol.33 (4), p.2020-2029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4c85611e526ff2871e62f3581e741c4c7d3bccdc4441b12d758acec9b3eeb19a3</citedby><cites>FETCH-LOGICAL-c295t-4c85611e526ff2871e62f3581e741c4c7d3bccdc4441b12d758acec9b3eeb19a3</cites><orcidid>0000-0003-4982-0475 ; 0000-0003-0865-6947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8320830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8320830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Berger, Maxime</creatorcontrib><creatorcontrib>Kocar, Ilhan</creatorcontrib><creatorcontrib>Fortin-Blanchette, Handy</creatorcontrib><creatorcontrib>Lavertu, Carl</creatorcontrib><title>Hybrid Average Modeling of Three-Phase Dual Active Bridge Converters for Stability Analysis</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>The three-phase dual active bridge (3p-DAB) converter is widely addressed in emerging power systems applications such as solid-state transformer and dc microgrids. Its successful integration requires accurate modeling of its small-signal characteristics. Due to its dc-ac-dc structure, the DAB converter brings many challenges to small-signal modeling. The state-space averaging (SSA) has been the first proposed methodology to approximate the control-to-output and line-to-output transfer functions of the 3p-DAB. However, as shown in this paper, SSA is not precise for the stability analysis of 3p-DAB converters. A generalized state-space averaging (GSSA) model based on the dynamic phasor concept is developed in this paper for the Y-Δ 3p-DAB. A hybrid SSA and GSSA model representation is then proposed for the evaluation of all the converter transfer functions. The developed models are validated with detailed time-domain switch-level simulations in an electromagnetic transient-type (EMT-type) program. They are also used for the accelerated stability prediction in an EMT-type program.</description><subject>bidirectional converters</subject><subject>Biological system modeling</subject><subject>Bridge circuits</subject><subject>Computer simulation</subject><subject>dc-dc conversion</subject><subject>Distributed resources</subject><subject>dual active bridge</subject><subject>dynamic phasor</subject><subject>Electric bridges</subject><subject>Electric converters</subject><subject>Electric power grids</subject><subject>electromagnetic transients program</subject><subject>generalized averaging</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>state-space averaging</subject><subject>Transfer functions</subject><subject>Voltage control</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwjAYhxujiYh-Ab008Tzsv9HuOEHFBCNRjAcPTde9g5LJsB0k-_YWIZ7ey_P88uZB6JqSAaUku5vPPt_GA0aoGjBFpZLqBPVoxmUiGFGnqEeUShOVSXmOLkJYEUIEyUgPfU26wrsS5zvwZgH4pSmhdusFbio8X3qAZLY0AfB4a2qc29btAN9HIaKjZh2lFnzAVePxe2sKV7u2w_na1F1w4RKdVaYOcHW8ffTx-DAfTZLp69PzKJ8mlmVpmwir0iGlkLJhVTElKQxZxVNFQQpqhZUlL6wtrRCCFpSVMlXGgs0KDlDQzPA-uj3sbnzzs4XQ6lWz9fGJoBnhkotUEB4pdqCsb0LwUOmNd9_Gd5oSvY-o_yLqfUR9jBilm4PkAOBfUDxG5YT_Ag9qbgg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Berger, Maxime</creator><creator>Kocar, Ilhan</creator><creator>Fortin-Blanchette, Handy</creator><creator>Lavertu, Carl</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4982-0475</orcidid><orcidid>https://orcid.org/0000-0003-0865-6947</orcidid></search><sort><creationdate>20180801</creationdate><title>Hybrid Average Modeling of Three-Phase Dual Active Bridge Converters for Stability Analysis</title><author>Berger, Maxime ; Kocar, Ilhan ; Fortin-Blanchette, Handy ; Lavertu, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4c85611e526ff2871e62f3581e741c4c7d3bccdc4441b12d758acec9b3eeb19a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bidirectional converters</topic><topic>Biological system modeling</topic><topic>Bridge circuits</topic><topic>Computer simulation</topic><topic>dc-dc conversion</topic><topic>Distributed resources</topic><topic>dual active bridge</topic><topic>dynamic phasor</topic><topic>Electric bridges</topic><topic>Electric converters</topic><topic>Electric power grids</topic><topic>electromagnetic transients program</topic><topic>generalized averaging</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>state-space averaging</topic><topic>Transfer functions</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Maxime</creatorcontrib><creatorcontrib>Kocar, Ilhan</creatorcontrib><creatorcontrib>Fortin-Blanchette, Handy</creatorcontrib><creatorcontrib>Lavertu, Carl</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berger, Maxime</au><au>Kocar, Ilhan</au><au>Fortin-Blanchette, Handy</au><au>Lavertu, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Average Modeling of Three-Phase Dual Active Bridge Converters for Stability Analysis</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>33</volume><issue>4</issue><spage>2020</spage><epage>2029</epage><pages>2020-2029</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>The three-phase dual active bridge (3p-DAB) converter is widely addressed in emerging power systems applications such as solid-state transformer and dc microgrids. Its successful integration requires accurate modeling of its small-signal characteristics. Due to its dc-ac-dc structure, the DAB converter brings many challenges to small-signal modeling. The state-space averaging (SSA) has been the first proposed methodology to approximate the control-to-output and line-to-output transfer functions of the 3p-DAB. However, as shown in this paper, SSA is not precise for the stability analysis of 3p-DAB converters. A generalized state-space averaging (GSSA) model based on the dynamic phasor concept is developed in this paper for the Y-Δ 3p-DAB. A hybrid SSA and GSSA model representation is then proposed for the evaluation of all the converter transfer functions. The developed models are validated with detailed time-domain switch-level simulations in an electromagnetic transient-type (EMT-type) program. They are also used for the accelerated stability prediction in an EMT-type program.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2018.2817878</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4982-0475</orcidid><orcidid>https://orcid.org/0000-0003-0865-6947</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2018-08, Vol.33 (4), p.2020-2029 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_journals_2037345403 |
source | IEEE Electronic Library (IEL) |
subjects | bidirectional converters Biological system modeling Bridge circuits Computer simulation dc-dc conversion Distributed resources dual active bridge dynamic phasor Electric bridges Electric converters Electric power grids electromagnetic transients program generalized averaging Mathematical model Mathematical models Modelling Power system stability Stability analysis state-space averaging Transfer functions Voltage control |
title | Hybrid Average Modeling of Three-Phase Dual Active Bridge Converters for Stability Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Average%20Modeling%20of%20Three-Phase%20Dual%20Active%20Bridge%20Converters%20for%20Stability%20Analysis&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Berger,%20Maxime&rft.date=2018-08-01&rft.volume=33&rft.issue=4&rft.spage=2020&rft.epage=2029&rft.pages=2020-2029&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2018.2817878&rft_dat=%3Cproquest_RIE%3E2037345403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037345403&rft_id=info:pmid/&rft_ieee_id=8320830&rfr_iscdi=true |