Chaotic Motion of a Pendulum with Oscillatory Forcing
The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 1993-06, Vol.100 (6), p.563-572 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 6 |
container_start_page | 563 |
container_title | The American mathematical monthly |
container_volume | 100 |
creator | Hastings, S. P. McLeod, J. B. |
description | The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map. |
doi_str_mv | 10.1080/00029890.1993.11990451 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_203728096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2324615</jstor_id><sourcerecordid>2324615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOD_-ghTxtvOcfLW5lOFUmMwLvQ5p2rqOrplJi-zfm7JNvXnDIc95Ex5CbhCmCDncAwBVuYqTUmyKMYELPCETVAxSUBk9JZMRSkfqnFyEsI4jCE4nRMxWxvWNTV5jui5xdWKSt6orh3bYJN9Nv0qWwTZta3rnd8ncedt0n1fkrDZtqK4P5yX5mD--z57TxfLpZfawSC3mQqa8EKxgspSc8YKrTJpcghIokBmkgmdMxRuVFXkOUJYswzJ-sRQKbC04VuyS3O57t959DVXo9doNvotPagosozkoGSG5h6x3Ifiq1lvfbIzfaQQ9GtJHQ3o0pI-G4uLdod0Ea9ram8424XebIzIK9A9bh-jgfzllkMWgXKJgP1gTbSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203728096</pqid></control><display><type>article</type><title>Chaotic Motion of a Pendulum with Oscillatory Forcing</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hastings, S. P. ; McLeod, J. B.</creator><creatorcontrib>Hastings, S. P. ; McLeod, J. B.</creatorcontrib><description>The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.1993.11990451</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington, DC: Mathematical Association of America</publisher><subject>Chaos theory ; Classical and quantum physics: mechanics and fields ; Classical mechanics of discrete systems: general mathematical aspects ; Counter rotation ; Damping ; Differential equations ; Dynamical systems ; Exact sciences and technology ; Geometry, differential geometry, and topology ; Global analysis and analysis on manifolds ; Integers ; Kinetics ; Mathematical methods in physics ; Mathematics ; Nonlinear dynamics and nonlinear dynamical systems ; Pendulums ; Physics ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Trajectories</subject><ispartof>The American mathematical monthly, 1993-06, Vol.100 (6), p.563-572</ispartof><rights>Copyright 1993 Mathematical Association of America (Incorporated)</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Mathematical Association Of America Jun 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</citedby><cites>FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2324615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2324615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,27929,27930,58022,58026,58255,58259</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4113202$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hastings, S. P.</creatorcontrib><creatorcontrib>McLeod, J. B.</creatorcontrib><title>Chaotic Motion of a Pendulum with Oscillatory Forcing</title><title>The American mathematical monthly</title><description>The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.</description><subject>Chaos theory</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of discrete systems: general mathematical aspects</subject><subject>Counter rotation</subject><subject>Damping</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Geometry, differential geometry, and topology</subject><subject>Global analysis and analysis on manifolds</subject><subject>Integers</subject><subject>Kinetics</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Pendulums</subject><subject>Physics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Trajectories</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOD_-ghTxtvOcfLW5lOFUmMwLvQ5p2rqOrplJi-zfm7JNvXnDIc95Ex5CbhCmCDncAwBVuYqTUmyKMYELPCETVAxSUBk9JZMRSkfqnFyEsI4jCE4nRMxWxvWNTV5jui5xdWKSt6orh3bYJN9Nv0qWwTZta3rnd8ncedt0n1fkrDZtqK4P5yX5mD--z57TxfLpZfawSC3mQqa8EKxgspSc8YKrTJpcghIokBmkgmdMxRuVFXkOUJYswzJ-sRQKbC04VuyS3O57t959DVXo9doNvotPagosozkoGSG5h6x3Ifiq1lvfbIzfaQQ9GtJHQ3o0pI-G4uLdod0Ea9ram8424XebIzIK9A9bh-jgfzllkMWgXKJgP1gTbSI</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Hastings, S. P.</creator><creator>McLeod, J. B.</creator><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19930601</creationdate><title>Chaotic Motion of a Pendulum with Oscillatory Forcing</title><author>Hastings, S. P. ; McLeod, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Chaos theory</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of discrete systems: general mathematical aspects</topic><topic>Counter rotation</topic><topic>Damping</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Geometry, differential geometry, and topology</topic><topic>Global analysis and analysis on manifolds</topic><topic>Integers</topic><topic>Kinetics</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Pendulums</topic><topic>Physics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hastings, S. P.</creatorcontrib><creatorcontrib>McLeod, J. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hastings, S. P.</au><au>McLeod, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic Motion of a Pendulum with Oscillatory Forcing</atitle><jtitle>The American mathematical monthly</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>100</volume><issue>6</issue><spage>563</spage><epage>572</epage><pages>563-572</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.</abstract><cop>Washington, DC</cop><pub>Mathematical Association of America</pub><doi>10.1080/00029890.1993.11990451</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 1993-06, Vol.100 (6), p.563-572 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_proquest_journals_203728096 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Chaos theory Classical and quantum physics: mechanics and fields Classical mechanics of discrete systems: general mathematical aspects Counter rotation Damping Differential equations Dynamical systems Exact sciences and technology Geometry, differential geometry, and topology Global analysis and analysis on manifolds Integers Kinetics Mathematical methods in physics Mathematics Nonlinear dynamics and nonlinear dynamical systems Pendulums Physics Statistical physics, thermodynamics, and nonlinear dynamical systems Trajectories |
title | Chaotic Motion of a Pendulum with Oscillatory Forcing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20Motion%20of%20a%20Pendulum%20with%20Oscillatory%20Forcing&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Hastings,%20S.%20P.&rft.date=1993-06-01&rft.volume=100&rft.issue=6&rft.spage=563&rft.epage=572&rft.pages=563-572&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.1080/00029890.1993.11990451&rft_dat=%3Cjstor_proqu%3E2324615%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203728096&rft_id=info:pmid/&rft_jstor_id=2324615&rfr_iscdi=true |