Chaotic Motion of a Pendulum with Oscillatory Forcing

The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 1993-06, Vol.100 (6), p.563-572
Hauptverfasser: Hastings, S. P., McLeod, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 6
container_start_page 563
container_title The American mathematical monthly
container_volume 100
creator Hastings, S. P.
McLeod, J. B.
description The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.
doi_str_mv 10.1080/00029890.1993.11990451
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_203728096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2324615</jstor_id><sourcerecordid>2324615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOD_-ghTxtvOcfLW5lOFUmMwLvQ5p2rqOrplJi-zfm7JNvXnDIc95Ex5CbhCmCDncAwBVuYqTUmyKMYELPCETVAxSUBk9JZMRSkfqnFyEsI4jCE4nRMxWxvWNTV5jui5xdWKSt6orh3bYJN9Nv0qWwTZta3rnd8ncedt0n1fkrDZtqK4P5yX5mD--z57TxfLpZfawSC3mQqa8EKxgspSc8YKrTJpcghIokBmkgmdMxRuVFXkOUJYswzJ-sRQKbC04VuyS3O57t959DVXo9doNvotPagosozkoGSG5h6x3Ifiq1lvfbIzfaQQ9GtJHQ3o0pI-G4uLdod0Ea9ram8424XebIzIK9A9bh-jgfzllkMWgXKJgP1gTbSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203728096</pqid></control><display><type>article</type><title>Chaotic Motion of a Pendulum with Oscillatory Forcing</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hastings, S. P. ; McLeod, J. B.</creator><creatorcontrib>Hastings, S. P. ; McLeod, J. B.</creatorcontrib><description>The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.1993.11990451</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington, DC: Mathematical Association of America</publisher><subject>Chaos theory ; Classical and quantum physics: mechanics and fields ; Classical mechanics of discrete systems: general mathematical aspects ; Counter rotation ; Damping ; Differential equations ; Dynamical systems ; Exact sciences and technology ; Geometry, differential geometry, and topology ; Global analysis and analysis on manifolds ; Integers ; Kinetics ; Mathematical methods in physics ; Mathematics ; Nonlinear dynamics and nonlinear dynamical systems ; Pendulums ; Physics ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Trajectories</subject><ispartof>The American mathematical monthly, 1993-06, Vol.100 (6), p.563-572</ispartof><rights>Copyright 1993 Mathematical Association of America (Incorporated)</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Mathematical Association Of America Jun 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</citedby><cites>FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2324615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2324615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,27929,27930,58022,58026,58255,58259</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4113202$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hastings, S. P.</creatorcontrib><creatorcontrib>McLeod, J. B.</creatorcontrib><title>Chaotic Motion of a Pendulum with Oscillatory Forcing</title><title>The American mathematical monthly</title><description>The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.</description><subject>Chaos theory</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of discrete systems: general mathematical aspects</subject><subject>Counter rotation</subject><subject>Damping</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Geometry, differential geometry, and topology</subject><subject>Global analysis and analysis on manifolds</subject><subject>Integers</subject><subject>Kinetics</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Pendulums</subject><subject>Physics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Trajectories</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOD_-ghTxtvOcfLW5lOFUmMwLvQ5p2rqOrplJi-zfm7JNvXnDIc95Ex5CbhCmCDncAwBVuYqTUmyKMYELPCETVAxSUBk9JZMRSkfqnFyEsI4jCE4nRMxWxvWNTV5jui5xdWKSt6orh3bYJN9Nv0qWwTZta3rnd8ncedt0n1fkrDZtqK4P5yX5mD--z57TxfLpZfawSC3mQqa8EKxgspSc8YKrTJpcghIokBmkgmdMxRuVFXkOUJYswzJ-sRQKbC04VuyS3O57t959DVXo9doNvotPagosozkoGSG5h6x3Ifiq1lvfbIzfaQQ9GtJHQ3o0pI-G4uLdod0Ea9ram8424XebIzIK9A9bh-jgfzllkMWgXKJgP1gTbSI</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Hastings, S. P.</creator><creator>McLeod, J. B.</creator><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19930601</creationdate><title>Chaotic Motion of a Pendulum with Oscillatory Forcing</title><author>Hastings, S. P. ; McLeod, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1856-4b53b36d6434b4976a860951513a125473943497b8800dd371d989d590cf541e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Chaos theory</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of discrete systems: general mathematical aspects</topic><topic>Counter rotation</topic><topic>Damping</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Geometry, differential geometry, and topology</topic><topic>Global analysis and analysis on manifolds</topic><topic>Integers</topic><topic>Kinetics</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Pendulums</topic><topic>Physics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hastings, S. P.</creatorcontrib><creatorcontrib>McLeod, J. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hastings, S. P.</au><au>McLeod, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic Motion of a Pendulum with Oscillatory Forcing</atitle><jtitle>The American mathematical monthly</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>100</volume><issue>6</issue><spage>563</spage><epage>572</epage><pages>563-572</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>The chaos theory is discussed in conjunction with a pendulum with oscillatory forcing. The various results that come from differential equations are accessible by methods that involve the study of solutions of the differential equations directly rather than through a map.</abstract><cop>Washington, DC</cop><pub>Mathematical Association of America</pub><doi>10.1080/00029890.1993.11990451</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 1993-06, Vol.100 (6), p.563-572
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_203728096
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Chaos theory
Classical and quantum physics: mechanics and fields
Classical mechanics of discrete systems: general mathematical aspects
Counter rotation
Damping
Differential equations
Dynamical systems
Exact sciences and technology
Geometry, differential geometry, and topology
Global analysis and analysis on manifolds
Integers
Kinetics
Mathematical methods in physics
Mathematics
Nonlinear dynamics and nonlinear dynamical systems
Pendulums
Physics
Statistical physics, thermodynamics, and nonlinear dynamical systems
Trajectories
title Chaotic Motion of a Pendulum with Oscillatory Forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20Motion%20of%20a%20Pendulum%20with%20Oscillatory%20Forcing&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Hastings,%20S.%20P.&rft.date=1993-06-01&rft.volume=100&rft.issue=6&rft.spage=563&rft.epage=572&rft.pages=563-572&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.1080/00029890.1993.11990451&rft_dat=%3Cjstor_proqu%3E2324615%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203728096&rft_id=info:pmid/&rft_jstor_id=2324615&rfr_iscdi=true