Organogel Polymers from 10-Undecenoic Acid and Poly(vinyl acetate)
Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2018-09, Vol.26 (9), p.3670-3676 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing production of this product requires synthesis of vinyl esters containing medium length carboxylic chains. This starting material must be made from an expensive and low yielding transvinylation reaction, which leaves production of useful vinyl esters and, as a result, the organogels themselves, outside the realm of practical chemistry. We have developed a new, more practical production process and used it to directly synthesize a new polymer. This new process utilizes commercially available polyvinyl acetate and accomplishes the transformation with simple hydrolysis and anhydride addition steps. The new polymers form organogels with chloroform, acetone or toluene with swell ratios up to 30. They also show time-controlled release of crystal violet over a 100 h span. This new production process opens the possibility of producing organogels utilizing agricultural resources. |
---|---|
ISSN: | 1566-2543 1572-8919 |
DOI: | 10.1007/s10924-018-1241-4 |