Improving evolutionary decision tree induction with multi‐interval discretization

Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2018-05, Vol.34 (2), p.495-514
Hauptverfasser: Saremi, Mehrin, Yaghmaee, Farzin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 2
container_start_page 495
container_title Computational intelligence
container_volume 34
creator Saremi, Mehrin
Yaghmaee, Farzin
description Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree. The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.
doi_str_mv 10.1111/coin.12153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037112171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037112171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGleGwnTpao4qdSBQtgbSXOBFylSbGdVmXFETgjJ8EhrJnNjDTfzNN7hJwDnUGoK92ZdgYMEn5AJiBSGWepoIdkQjMmYpnz5JicOLeilAIX2YQ8LdYb221N-xrhtmt6b7q2sPuoQm1cmCNvESPTVr0eVtHO-Ldo3TfefH9-mdaj3RZNVBmnLXrzUQzQKTmqi8bh2V-fkpfbm-f5fbx8vFvMr5ex5kE9LkGikJBlRZEjy3XKE8YYUibzqs4qqlPMWY2UZoAlLypEEKKssAZBS5loPiUX49_g4L1H59Wq620bJBWjXELIQUKgLkdK2845i7XaWLMOHhVQNYSmhtDUb2gBhhHemQb3_5Bq_rh4GG9-AK6YcdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037112171</pqid></control><display><type>article</type><title>Improving evolutionary decision tree induction with multi‐interval discretization</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Saremi, Mehrin ; Yaghmaee, Farzin</creator><creatorcontrib>Saremi, Mehrin ; Yaghmaee, Farzin</creatorcontrib><description>Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree. The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12153</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Chi-square test ; classification ; Data mining ; decision tree ; Decision trees ; Evolutionary algorithms ; genetic programming ; Greedy algorithms ; multi‐interval discretization ; Pattern recognition</subject><ispartof>Computational intelligence, 2018-05, Vol.34 (2), p.495-514</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</citedby><cites>FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</cites><orcidid>0000-0001-7430-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Saremi, Mehrin</creatorcontrib><creatorcontrib>Yaghmaee, Farzin</creatorcontrib><title>Improving evolutionary decision tree induction with multi‐interval discretization</title><title>Computational intelligence</title><description>Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree. The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.</description><subject>Algorithms</subject><subject>Chi-square test</subject><subject>classification</subject><subject>Data mining</subject><subject>decision tree</subject><subject>Decision trees</subject><subject>Evolutionary algorithms</subject><subject>genetic programming</subject><subject>Greedy algorithms</subject><subject>multi‐interval discretization</subject><subject>Pattern recognition</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGleGwnTpao4qdSBQtgbSXOBFylSbGdVmXFETgjJ8EhrJnNjDTfzNN7hJwDnUGoK92ZdgYMEn5AJiBSGWepoIdkQjMmYpnz5JicOLeilAIX2YQ8LdYb221N-xrhtmt6b7q2sPuoQm1cmCNvESPTVr0eVtHO-Ldo3TfefH9-mdaj3RZNVBmnLXrzUQzQKTmqi8bh2V-fkpfbm-f5fbx8vFvMr5ex5kE9LkGikJBlRZEjy3XKE8YYUibzqs4qqlPMWY2UZoAlLypEEKKssAZBS5loPiUX49_g4L1H59Wq620bJBWjXELIQUKgLkdK2845i7XaWLMOHhVQNYSmhtDUb2gBhhHemQb3_5Bq_rh4GG9-AK6YcdE</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Saremi, Mehrin</creator><creator>Yaghmaee, Farzin</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7430-542X</orcidid></search><sort><creationdate>201805</creationdate><title>Improving evolutionary decision tree induction with multi‐interval discretization</title><author>Saremi, Mehrin ; Yaghmaee, Farzin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Chi-square test</topic><topic>classification</topic><topic>Data mining</topic><topic>decision tree</topic><topic>Decision trees</topic><topic>Evolutionary algorithms</topic><topic>genetic programming</topic><topic>Greedy algorithms</topic><topic>multi‐interval discretization</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saremi, Mehrin</creatorcontrib><creatorcontrib>Yaghmaee, Farzin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saremi, Mehrin</au><au>Yaghmaee, Farzin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving evolutionary decision tree induction with multi‐interval discretization</atitle><jtitle>Computational intelligence</jtitle><date>2018-05</date><risdate>2018</risdate><volume>34</volume><issue>2</issue><spage>495</spage><epage>514</epage><pages>495-514</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree. The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12153</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7430-542X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2018-05, Vol.34 (2), p.495-514
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_2037112171
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Algorithms
Chi-square test
classification
Data mining
decision tree
Decision trees
Evolutionary algorithms
genetic programming
Greedy algorithms
multi‐interval discretization
Pattern recognition
title Improving evolutionary decision tree induction with multi‐interval discretization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20evolutionary%20decision%20tree%20induction%20with%20multi%E2%80%90interval%20discretization&rft.jtitle=Computational%20intelligence&rft.au=Saremi,%20Mehrin&rft.date=2018-05&rft.volume=34&rft.issue=2&rft.spage=495&rft.epage=514&rft.pages=495-514&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12153&rft_dat=%3Cproquest_cross%3E2037112171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037112171&rft_id=info:pmid/&rfr_iscdi=true