Improving evolutionary decision tree induction with multi‐interval discretization
Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evo...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2018-05, Vol.34 (2), p.495-514 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 2 |
container_start_page | 495 |
container_title | Computational intelligence |
container_volume | 34 |
creator | Saremi, Mehrin Yaghmaee, Farzin |
description | Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree.
The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree. |
doi_str_mv | 10.1111/coin.12153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037112171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037112171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGleGwnTpao4qdSBQtgbSXOBFylSbGdVmXFETgjJ8EhrJnNjDTfzNN7hJwDnUGoK92ZdgYMEn5AJiBSGWepoIdkQjMmYpnz5JicOLeilAIX2YQ8LdYb221N-xrhtmt6b7q2sPuoQm1cmCNvESPTVr0eVtHO-Ldo3TfefH9-mdaj3RZNVBmnLXrzUQzQKTmqi8bh2V-fkpfbm-f5fbx8vFvMr5ex5kE9LkGikJBlRZEjy3XKE8YYUibzqs4qqlPMWY2UZoAlLypEEKKssAZBS5loPiUX49_g4L1H59Wq620bJBWjXELIQUKgLkdK2845i7XaWLMOHhVQNYSmhtDUb2gBhhHemQb3_5Bq_rh4GG9-AK6YcdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037112171</pqid></control><display><type>article</type><title>Improving evolutionary decision tree induction with multi‐interval discretization</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Saremi, Mehrin ; Yaghmaee, Farzin</creator><creatorcontrib>Saremi, Mehrin ; Yaghmaee, Farzin</creatorcontrib><description>Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree.
The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12153</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Chi-square test ; classification ; Data mining ; decision tree ; Decision trees ; Evolutionary algorithms ; genetic programming ; Greedy algorithms ; multi‐interval discretization ; Pattern recognition</subject><ispartof>Computational intelligence, 2018-05, Vol.34 (2), p.495-514</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</citedby><cites>FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</cites><orcidid>0000-0001-7430-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Saremi, Mehrin</creatorcontrib><creatorcontrib>Yaghmaee, Farzin</creatorcontrib><title>Improving evolutionary decision tree induction with multi‐interval discretization</title><title>Computational intelligence</title><description>Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree.
The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.</description><subject>Algorithms</subject><subject>Chi-square test</subject><subject>classification</subject><subject>Data mining</subject><subject>decision tree</subject><subject>Decision trees</subject><subject>Evolutionary algorithms</subject><subject>genetic programming</subject><subject>Greedy algorithms</subject><subject>multi‐interval discretization</subject><subject>Pattern recognition</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSR2CGleGwnTpao4qdSBQtgbSXOBFylSbGdVmXFETgjJ8EhrJnNjDTfzNN7hJwDnUGoK92ZdgYMEn5AJiBSGWepoIdkQjMmYpnz5JicOLeilAIX2YQ8LdYb221N-xrhtmt6b7q2sPuoQm1cmCNvESPTVr0eVtHO-Ldo3TfefH9-mdaj3RZNVBmnLXrzUQzQKTmqi8bh2V-fkpfbm-f5fbx8vFvMr5ex5kE9LkGikJBlRZEjy3XKE8YYUibzqs4qqlPMWY2UZoAlLypEEKKssAZBS5loPiUX49_g4L1H59Wq620bJBWjXELIQUKgLkdK2845i7XaWLMOHhVQNYSmhtDUb2gBhhHemQb3_5Bq_rh4GG9-AK6YcdE</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Saremi, Mehrin</creator><creator>Yaghmaee, Farzin</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7430-542X</orcidid></search><sort><creationdate>201805</creationdate><title>Improving evolutionary decision tree induction with multi‐interval discretization</title><author>Saremi, Mehrin ; Yaghmaee, Farzin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3013-b17e47188aa9e29c635222e0279df8d0c6e92fe0081eb3adee144bdef140b75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Chi-square test</topic><topic>classification</topic><topic>Data mining</topic><topic>decision tree</topic><topic>Decision trees</topic><topic>Evolutionary algorithms</topic><topic>genetic programming</topic><topic>Greedy algorithms</topic><topic>multi‐interval discretization</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saremi, Mehrin</creatorcontrib><creatorcontrib>Yaghmaee, Farzin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saremi, Mehrin</au><au>Yaghmaee, Farzin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving evolutionary decision tree induction with multi‐interval discretization</atitle><jtitle>Computational intelligence</jtitle><date>2018-05</date><risdate>2018</risdate><volume>34</volume><issue>2</issue><spage>495</spage><epage>514</epage><pages>495-514</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Decision trees are a widely used tool for pattern recognition and data mining. Over the last 4 decades, many algorithms have been developed for the induction of decision trees. Most of the classic algorithms use a greedy, divide‐and‐conquer search method to find an optimal tree, whereas recently evolutionary methods have been used to perform a global search in the space of possible trees. To the best of our knowledge, limited research has addressed the issue of multi‐interval decision trees. In this paper, we improve our previous work on multi‐interval trees and compare our previous and current work with a classic algorithm, ie, chi‐squared automatic interaction detection, and an evolutionary algorithm, ie, evtree.
The results show that the proposed method improves on our previous method both in accuracy and in speed. It also outperforms chi‐squared automatic interaction detection and performs comparably to evtree. The trees generated by our method have more nodes but are shallower than those produced by evtree.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12153</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7430-542X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2018-05, Vol.34 (2), p.495-514 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2037112171 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Algorithms Chi-square test classification Data mining decision tree Decision trees Evolutionary algorithms genetic programming Greedy algorithms multi‐interval discretization Pattern recognition |
title | Improving evolutionary decision tree induction with multi‐interval discretization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20evolutionary%20decision%20tree%20induction%20with%20multi%E2%80%90interval%20discretization&rft.jtitle=Computational%20intelligence&rft.au=Saremi,%20Mehrin&rft.date=2018-05&rft.volume=34&rft.issue=2&rft.spage=495&rft.epage=514&rft.pages=495-514&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12153&rft_dat=%3Cproquest_cross%3E2037112171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037112171&rft_id=info:pmid/&rfr_iscdi=true |