Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator

In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2018-06, Vol.6 (2), p.425-458
Hauptverfasser: Luo, Albert C. J., Ma, Haolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 425
container_title International journal of dynamics and control
container_volume 6
creator Luo, Albert C. J.
Ma, Haolin
description In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.
doi_str_mv 10.1007/s40435-017-0314-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037110425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037110425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA5-jkY7vJUatWoSCCgrcQ81FT2s2a7EL9925Z0ZOnGZjnfQcehM4pXFKA-qoIELwiQGsCnAqyP0ITRlVF2FzJ499dvp2iWSkbAGBUABNqgp5vYuizNV1MDe6y9wWngFufY3LR4l06HAruErYfJhUcG2xwa7LZ-S4PwG0fQmzWOBUbt1vTpXyGToLZFj_7mVP0en_3snggq6fl4-J6RSzjdE88E0ZwJ-eVMM6DlzUExd5BSUaBC1BCCmf93DkqoYKaGcadl0EJF1xFA5-ii7G3zemz96XTm9TnZnipGfCaUhCsGig6UjanUrIPus1xZ_KXpqAP8vQoTw_y9EGe3g8ZNmbKwDZrn_-a_w99A8becd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037110425</pqid></control><display><type>article</type><title>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Albert C. J. ; Ma, Haolin</creator><creatorcontrib>Luo, Albert C. J. ; Ma, Haolin</creatorcontrib><description>In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-017-0314-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bifurcations ; Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Differential equations ; Duffing oscillators ; Dynamical Systems ; Engineering ; Fourier series ; Motion stability ; Nonlinear equations ; Nonlinear systems ; Stability analysis ; Trajectory analysis ; Trees ; Vibration</subject><ispartof>International journal of dynamics and control, 2018-06, Vol.6 (2), p.425-458</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</citedby><cites>FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-017-0314-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-017-0314-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Luo, Albert C. J.</creatorcontrib><creatorcontrib>Ma, Haolin</creatorcontrib><title>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.</description><subject>Bifurcations</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Differential equations</subject><subject>Duffing oscillators</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fourier series</subject><subject>Motion stability</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Trajectory analysis</subject><subject>Trees</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA5-jkY7vJUatWoSCCgrcQ81FT2s2a7EL9925Z0ZOnGZjnfQcehM4pXFKA-qoIELwiQGsCnAqyP0ITRlVF2FzJ499dvp2iWSkbAGBUABNqgp5vYuizNV1MDe6y9wWngFufY3LR4l06HAruErYfJhUcG2xwa7LZ-S4PwG0fQmzWOBUbt1vTpXyGToLZFj_7mVP0en_3snggq6fl4-J6RSzjdE88E0ZwJ-eVMM6DlzUExd5BSUaBC1BCCmf93DkqoYKaGcadl0EJF1xFA5-ii7G3zemz96XTm9TnZnipGfCaUhCsGig6UjanUrIPus1xZ_KXpqAP8vQoTw_y9EGe3g8ZNmbKwDZrn_-a_w99A8becd0</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Luo, Albert C. J.</creator><creator>Ma, Haolin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</title><author>Luo, Albert C. J. ; Ma, Haolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bifurcations</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Differential equations</topic><topic>Duffing oscillators</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fourier series</topic><topic>Motion stability</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Trajectory analysis</topic><topic>Trees</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Albert C. J.</creatorcontrib><creatorcontrib>Ma, Haolin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Albert C. J.</au><au>Ma, Haolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><spage>425</spage><epage>458</epage><pages>425-458</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-017-0314-x</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2018-06, Vol.6 (2), p.425-458
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2037110425
source SpringerLink Journals - AutoHoldings
subjects Bifurcations
Complexity
Computer simulation
Control
Control and Systems Theory
Differential equations
Duffing oscillators
Dynamical Systems
Engineering
Fourier series
Motion stability
Nonlinear equations
Nonlinear systems
Stability analysis
Trajectory analysis
Trees
Vibration
title Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20trees%20of%20periodic%20motions%20to%20chaos%20in%20a%20parametric%20Duffing%20oscillator&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Luo,%20Albert%20C.%20J.&rft.date=2018-06-01&rft.volume=6&rft.issue=2&rft.spage=425&rft.epage=458&rft.pages=425-458&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-017-0314-x&rft_dat=%3Cproquest_cross%3E2037110425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037110425&rft_id=info:pmid/&rfr_iscdi=true