Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator
In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2018-06, Vol.6 (2), p.425-458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 2 |
container_start_page | 425 |
container_title | International journal of dynamics and control |
container_volume | 6 |
creator | Luo, Albert C. J. Ma, Haolin |
description | In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application. |
doi_str_mv | 10.1007/s40435-017-0314-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037110425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037110425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA5-jkY7vJUatWoSCCgrcQ81FT2s2a7EL9925Z0ZOnGZjnfQcehM4pXFKA-qoIELwiQGsCnAqyP0ITRlVF2FzJ499dvp2iWSkbAGBUABNqgp5vYuizNV1MDe6y9wWngFufY3LR4l06HAruErYfJhUcG2xwa7LZ-S4PwG0fQmzWOBUbt1vTpXyGToLZFj_7mVP0en_3snggq6fl4-J6RSzjdE88E0ZwJ-eVMM6DlzUExd5BSUaBC1BCCmf93DkqoYKaGcadl0EJF1xFA5-ii7G3zemz96XTm9TnZnipGfCaUhCsGig6UjanUrIPus1xZ_KXpqAP8vQoTw_y9EGe3g8ZNmbKwDZrn_-a_w99A8becd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037110425</pqid></control><display><type>article</type><title>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Albert C. J. ; Ma, Haolin</creator><creatorcontrib>Luo, Albert C. J. ; Ma, Haolin</creatorcontrib><description>In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-017-0314-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bifurcations ; Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Differential equations ; Duffing oscillators ; Dynamical Systems ; Engineering ; Fourier series ; Motion stability ; Nonlinear equations ; Nonlinear systems ; Stability analysis ; Trajectory analysis ; Trees ; Vibration</subject><ispartof>International journal of dynamics and control, 2018-06, Vol.6 (2), p.425-458</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</citedby><cites>FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-017-0314-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-017-0314-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Luo, Albert C. J.</creatorcontrib><creatorcontrib>Ma, Haolin</creatorcontrib><title>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.</description><subject>Bifurcations</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Differential equations</subject><subject>Duffing oscillators</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fourier series</subject><subject>Motion stability</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Trajectory analysis</subject><subject>Trees</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA5-jkY7vJUatWoSCCgrcQ81FT2s2a7EL9925Z0ZOnGZjnfQcehM4pXFKA-qoIELwiQGsCnAqyP0ITRlVF2FzJ499dvp2iWSkbAGBUABNqgp5vYuizNV1MDe6y9wWngFufY3LR4l06HAruErYfJhUcG2xwa7LZ-S4PwG0fQmzWOBUbt1vTpXyGToLZFj_7mVP0en_3snggq6fl4-J6RSzjdE88E0ZwJ-eVMM6DlzUExd5BSUaBC1BCCmf93DkqoYKaGcadl0EJF1xFA5-ii7G3zemz96XTm9TnZnipGfCaUhCsGig6UjanUrIPus1xZ_KXpqAP8vQoTw_y9EGe3g8ZNmbKwDZrn_-a_w99A8becd0</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Luo, Albert C. J.</creator><creator>Ma, Haolin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</title><author>Luo, Albert C. J. ; Ma, Haolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231x-e24a43d8654ade0e870f92b0982103409484dce6dd1805072a23de8f94dfd51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bifurcations</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Differential equations</topic><topic>Duffing oscillators</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fourier series</topic><topic>Motion stability</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Trajectory analysis</topic><topic>Trees</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Albert C. J.</creatorcontrib><creatorcontrib>Ma, Haolin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Albert C. J.</au><au>Ma, Haolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>6</volume><issue>2</issue><spage>425</spage><epage>458</epage><pages>425-458</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this paper, bifurcation trees of periodic motions to chaos in a damped, parametric Duffing oscillator are investigated. From the semi-analytic method, differential equations of nonlinear dynamical systems are discretized first to obtain implicit mappings. Following the implicit mapping structures, periodic nodes of periodic motions are computed. The bifurcation trees of period-1 to period-4 motions are presented to demonstrate the routes of period-1 motions to chaos, and the corresponding stability and bifurcation are determined by eigenvalue analysis. For a better understanding of nonlinear behaviors of periodic motions in a parametric Duffing oscillator, harmonic frequency–amplitude characteristics of periodic motions are presented. From the analytical predictions, numerical simulations are performed. The trajectory, time-histories of displacement and velocity, harmonic amplitudes and phases of period-1 to period-4 motions are presented. Based on comparison of numerical and analytical results, determined is how many harmonic terms should be included in finite Fourier series, which help one select harmonic terms in analytical solutions and engineering application.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-017-0314-x</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2018-06, Vol.6 (2), p.425-458 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2037110425 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bifurcations Complexity Computer simulation Control Control and Systems Theory Differential equations Duffing oscillators Dynamical Systems Engineering Fourier series Motion stability Nonlinear equations Nonlinear systems Stability analysis Trajectory analysis Trees Vibration |
title | Bifurcation trees of periodic motions to chaos in a parametric Duffing oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20trees%20of%20periodic%20motions%20to%20chaos%20in%20a%20parametric%20Duffing%20oscillator&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Luo,%20Albert%20C.%20J.&rft.date=2018-06-01&rft.volume=6&rft.issue=2&rft.spage=425&rft.epage=458&rft.pages=425-458&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-017-0314-x&rft_dat=%3Cproquest_cross%3E2037110425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037110425&rft_id=info:pmid/&rfr_iscdi=true |