Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale

Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2018-04, Vol.123 (4), p.1387-1405
Hauptverfasser: Atkins, J. W., Fahey, R. T., Hardiman, B. S., Gough, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1405
container_issue 4
container_start_page 1387
container_title Journal of geophysical research. Biogeosciences
container_volume 123
creator Atkins, J. W.
Fahey, R. T.
Hardiman, B. S.
Gough, C. M.
description Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (>1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance. Plain Language Summary Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light. Key Points We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models
doi_str_mv 10.1002/2017JG004256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037081417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037081417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouOje_AABr1Yzafonx6W41WVB2NVzSdLU7dJtapKi_fZmWRFPzmUeb37M8AahGyD3QAh9oASyVUkIo0l6hmYUUh7lPIXzX53El2ju3J6EyoMFMENyaax2HheiN8OEt96Oyo9WdLgwh6HTX62fsOhrvG7fdx4vpDN28K3p8UZ34ijcrh0cFh77ncbbUSrT-7bXvQ87tkp0-hpdNKJzev7Tr9Db8vG1eIrWL-VzsVhHigGkkUhywllTx0ldE81rpSFuFOcyzxOWMy4pJQ0JE0gzJXnDIJFC1SlXTbCYjK_Q7WnvYM3HGEJVezPaPpysKImzEJlBFqi7E6Wscc7qphpsexB2qoBUx0dWfx8Z8PiEf7adnv5lq1W5KSkQmsbfbkt0qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037081417</pqid></control><display><type>article</type><title>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Atkins, J. W. ; Fahey, R. T. ; Hardiman, B. S. ; Gough, C. M.</creator><creatorcontrib>Atkins, J. W. ; Fahey, R. T. ; Hardiman, B. S. ; Gough, C. M.</creatorcontrib><description>Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (&gt;1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance. Plain Language Summary Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light. Key Points We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1002/2017JG004256</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Absorption ; Area ; Biogeochemical cycle ; Biogeochemical cycles ; Biogeochemistry ; Canopies ; Canopy ; canopy structure ; Complexity ; Confidence ; Ecological monitoring ; Educational institutions ; Electromagnetic absorption ; Energy balance ; Forests ; Interactions ; Leaf area ; Leaves ; LiDAR ; Light ; Light absorption ; Light scattering ; Mathematical models ; Modelling ; National Ecological Observatory Network fpar ; Photosynthetically active radiation ; Physical sciences ; radiative transfer ; Surveying ; Vegetation</subject><ispartof>Journal of geophysical research. Biogeosciences, 2018-04, Vol.123 (4), p.1387-1405</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</citedby><cites>FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</cites><orcidid>0000-0002-2295-3131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JG004256$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JG004256$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Atkins, J. W.</creatorcontrib><creatorcontrib>Fahey, R. T.</creatorcontrib><creatorcontrib>Hardiman, B. S.</creatorcontrib><creatorcontrib>Gough, C. M.</creatorcontrib><title>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</title><title>Journal of geophysical research. Biogeosciences</title><description>Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (&gt;1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance. Plain Language Summary Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light. Key Points We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models</description><subject>Absorption</subject><subject>Area</subject><subject>Biogeochemical cycle</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Canopies</subject><subject>Canopy</subject><subject>canopy structure</subject><subject>Complexity</subject><subject>Confidence</subject><subject>Ecological monitoring</subject><subject>Educational institutions</subject><subject>Electromagnetic absorption</subject><subject>Energy balance</subject><subject>Forests</subject><subject>Interactions</subject><subject>Leaf area</subject><subject>Leaves</subject><subject>LiDAR</subject><subject>Light</subject><subject>Light absorption</subject><subject>Light scattering</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>National Ecological Observatory Network fpar</subject><subject>Photosynthetically active radiation</subject><subject>Physical sciences</subject><subject>radiative transfer</subject><subject>Surveying</subject><subject>Vegetation</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouOje_AABr1Yzafonx6W41WVB2NVzSdLU7dJtapKi_fZmWRFPzmUeb37M8AahGyD3QAh9oASyVUkIo0l6hmYUUh7lPIXzX53El2ju3J6EyoMFMENyaax2HheiN8OEt96Oyo9WdLgwh6HTX62fsOhrvG7fdx4vpDN28K3p8UZ34ijcrh0cFh77ncbbUSrT-7bXvQ87tkp0-hpdNKJzev7Tr9Db8vG1eIrWL-VzsVhHigGkkUhywllTx0ldE81rpSFuFOcyzxOWMy4pJQ0JE0gzJXnDIJFC1SlXTbCYjK_Q7WnvYM3HGEJVezPaPpysKImzEJlBFqi7E6Wscc7qphpsexB2qoBUx0dWfx8Z8PiEf7adnv5lq1W5KSkQmsbfbkt0qA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Atkins, J. W.</creator><creator>Fahey, R. T.</creator><creator>Hardiman, B. S.</creator><creator>Gough, C. M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-2295-3131</orcidid></search><sort><creationdate>201804</creationdate><title>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</title><author>Atkins, J. W. ; Fahey, R. T. ; Hardiman, B. S. ; Gough, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Area</topic><topic>Biogeochemical cycle</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Canopies</topic><topic>Canopy</topic><topic>canopy structure</topic><topic>Complexity</topic><topic>Confidence</topic><topic>Ecological monitoring</topic><topic>Educational institutions</topic><topic>Electromagnetic absorption</topic><topic>Energy balance</topic><topic>Forests</topic><topic>Interactions</topic><topic>Leaf area</topic><topic>Leaves</topic><topic>LiDAR</topic><topic>Light</topic><topic>Light absorption</topic><topic>Light scattering</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>National Ecological Observatory Network fpar</topic><topic>Photosynthetically active radiation</topic><topic>Physical sciences</topic><topic>radiative transfer</topic><topic>Surveying</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkins, J. W.</creatorcontrib><creatorcontrib>Fahey, R. T.</creatorcontrib><creatorcontrib>Hardiman, B. S.</creatorcontrib><creatorcontrib>Gough, C. M.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkins, J. W.</au><au>Fahey, R. T.</au><au>Hardiman, B. S.</au><au>Gough, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2018-04</date><risdate>2018</risdate><volume>123</volume><issue>4</issue><spage>1387</spage><epage>1405</epage><pages>1387-1405</pages><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (&gt;1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance. Plain Language Summary Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light. Key Points We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JG004256</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2295-3131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-8953
ispartof Journal of geophysical research. Biogeosciences, 2018-04, Vol.123 (4), p.1387-1405
issn 2169-8953
2169-8961
language eng
recordid cdi_proquest_journals_2037081417
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Absorption
Area
Biogeochemical cycle
Biogeochemical cycles
Biogeochemistry
Canopies
Canopy
canopy structure
Complexity
Confidence
Ecological monitoring
Educational institutions
Electromagnetic absorption
Energy balance
Forests
Interactions
Leaf area
Leaves
LiDAR
Light
Light absorption
Light scattering
Mathematical models
Modelling
National Ecological Observatory Network fpar
Photosynthetically active radiation
Physical sciences
radiative transfer
Surveying
Vegetation
title Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forest%20Canopy%20Structural%20Complexity%20and%20Light%20Absorption%20Relationships%20at%20the%20Subcontinental%20Scale&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Atkins,%20J.%20W.&rft.date=2018-04&rft.volume=123&rft.issue=4&rft.spage=1387&rft.epage=1405&rft.pages=1387-1405&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1002/2017JG004256&rft_dat=%3Cproquest_cross%3E2037081417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037081417&rft_id=info:pmid/&rfr_iscdi=true