Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale
Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy l...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Biogeosciences 2018-04, Vol.123 (4), p.1387-1405 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1405 |
---|---|
container_issue | 4 |
container_start_page | 1387 |
container_title | Journal of geophysical research. Biogeosciences |
container_volume | 123 |
creator | Atkins, J. W. Fahey, R. T. Hardiman, B. S. Gough, C. M. |
description | Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (>1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance.
Plain Language Summary
Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light.
Key Points
We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites
Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites
Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models |
doi_str_mv | 10.1002/2017JG004256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2037081417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037081417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouOje_AABr1Yzafonx6W41WVB2NVzSdLU7dJtapKi_fZmWRFPzmUeb37M8AahGyD3QAh9oASyVUkIo0l6hmYUUh7lPIXzX53El2ju3J6EyoMFMENyaax2HheiN8OEt96Oyo9WdLgwh6HTX62fsOhrvG7fdx4vpDN28K3p8UZ34ijcrh0cFh77ncbbUSrT-7bXvQ87tkp0-hpdNKJzev7Tr9Db8vG1eIrWL-VzsVhHigGkkUhywllTx0ldE81rpSFuFOcyzxOWMy4pJQ0JE0gzJXnDIJFC1SlXTbCYjK_Q7WnvYM3HGEJVezPaPpysKImzEJlBFqi7E6Wscc7qphpsexB2qoBUx0dWfx8Z8PiEf7adnv5lq1W5KSkQmsbfbkt0qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037081417</pqid></control><display><type>article</type><title>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Atkins, J. W. ; Fahey, R. T. ; Hardiman, B. S. ; Gough, C. M.</creator><creatorcontrib>Atkins, J. W. ; Fahey, R. T. ; Hardiman, B. S. ; Gough, C. M.</creatorcontrib><description>Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (>1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance.
Plain Language Summary
Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light.
Key Points
We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites
Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites
Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1002/2017JG004256</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Absorption ; Area ; Biogeochemical cycle ; Biogeochemical cycles ; Biogeochemistry ; Canopies ; Canopy ; canopy structure ; Complexity ; Confidence ; Ecological monitoring ; Educational institutions ; Electromagnetic absorption ; Energy balance ; Forests ; Interactions ; Leaf area ; Leaves ; LiDAR ; Light ; Light absorption ; Light scattering ; Mathematical models ; Modelling ; National Ecological Observatory Network fpar ; Photosynthetically active radiation ; Physical sciences ; radiative transfer ; Surveying ; Vegetation</subject><ispartof>Journal of geophysical research. Biogeosciences, 2018-04, Vol.123 (4), p.1387-1405</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</citedby><cites>FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</cites><orcidid>0000-0002-2295-3131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JG004256$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JG004256$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Atkins, J. W.</creatorcontrib><creatorcontrib>Fahey, R. T.</creatorcontrib><creatorcontrib>Hardiman, B. S.</creatorcontrib><creatorcontrib>Gough, C. M.</creatorcontrib><title>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</title><title>Journal of geophysical research. Biogeosciences</title><description>Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (>1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance.
Plain Language Summary
Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light.
Key Points
We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites
Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites
Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models</description><subject>Absorption</subject><subject>Area</subject><subject>Biogeochemical cycle</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Canopies</subject><subject>Canopy</subject><subject>canopy structure</subject><subject>Complexity</subject><subject>Confidence</subject><subject>Ecological monitoring</subject><subject>Educational institutions</subject><subject>Electromagnetic absorption</subject><subject>Energy balance</subject><subject>Forests</subject><subject>Interactions</subject><subject>Leaf area</subject><subject>Leaves</subject><subject>LiDAR</subject><subject>Light</subject><subject>Light absorption</subject><subject>Light scattering</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>National Ecological Observatory Network fpar</subject><subject>Photosynthetically active radiation</subject><subject>Physical sciences</subject><subject>radiative transfer</subject><subject>Surveying</subject><subject>Vegetation</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouOje_AABr1Yzafonx6W41WVB2NVzSdLU7dJtapKi_fZmWRFPzmUeb37M8AahGyD3QAh9oASyVUkIo0l6hmYUUh7lPIXzX53El2ju3J6EyoMFMENyaax2HheiN8OEt96Oyo9WdLgwh6HTX62fsOhrvG7fdx4vpDN28K3p8UZ34ijcrh0cFh77ncbbUSrT-7bXvQ87tkp0-hpdNKJzev7Tr9Db8vG1eIrWL-VzsVhHigGkkUhywllTx0ldE81rpSFuFOcyzxOWMy4pJQ0JE0gzJXnDIJFC1SlXTbCYjK_Q7WnvYM3HGEJVezPaPpysKImzEJlBFqi7E6Wscc7qphpsexB2qoBUx0dWfx8Z8PiEf7adnv5lq1W5KSkQmsbfbkt0qA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Atkins, J. W.</creator><creator>Fahey, R. T.</creator><creator>Hardiman, B. S.</creator><creator>Gough, C. M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-2295-3131</orcidid></search><sort><creationdate>201804</creationdate><title>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</title><author>Atkins, J. W. ; Fahey, R. T. ; Hardiman, B. S. ; Gough, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4116-a58094fd35dd0e9dce13fc99b8854849b220f00e9167cb9f415bacd69cf9164b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Area</topic><topic>Biogeochemical cycle</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Canopies</topic><topic>Canopy</topic><topic>canopy structure</topic><topic>Complexity</topic><topic>Confidence</topic><topic>Ecological monitoring</topic><topic>Educational institutions</topic><topic>Electromagnetic absorption</topic><topic>Energy balance</topic><topic>Forests</topic><topic>Interactions</topic><topic>Leaf area</topic><topic>Leaves</topic><topic>LiDAR</topic><topic>Light</topic><topic>Light absorption</topic><topic>Light scattering</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>National Ecological Observatory Network fpar</topic><topic>Photosynthetically active radiation</topic><topic>Physical sciences</topic><topic>radiative transfer</topic><topic>Surveying</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkins, J. W.</creatorcontrib><creatorcontrib>Fahey, R. T.</creatorcontrib><creatorcontrib>Hardiman, B. S.</creatorcontrib><creatorcontrib>Gough, C. M.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkins, J. W.</au><au>Fahey, R. T.</au><au>Hardiman, B. S.</au><au>Gough, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2018-04</date><risdate>2018</risdate><volume>123</volume><issue>4</issue><spage>1387</spage><epage>1405</epage><pages>1387-1405</pages><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Understanding how the physical structure of forest canopies influences light absorption is a long‐standing area of inquiry fundamental to the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure used to infer canopy light absorption are often limited to leaf or vegetation area indexes. However, LiDAR‐derived measures of canopy structural complexity (CSC) that describe the arrangement of vegetation may improve prediction of canopy light absorption by providing novel information on canopy‐light interactions not regulated by leaf area alone. We measured multiple indexes of CSC, vegetation area index (VAI), and the fraction of photosynthetically active radiation absorbed (fPAR) across the eastern United States using portable canopy LiDAR to evaluate how different canopy structural attributes relate to fPAR. Our survey included sites from the National Ecological Observation Network and university field stations. Measures of CSC were more strongly coupled with fPAR under high light (>1,000 μmol m−2 s−1 PAR). Under low light conditions, when diffuse light predominates, light scattering weakens the dependency of fPAR on CSC. A multivariate model including CSC parameters and VAI explains ~89% of the intersite variance in fPAR, an improvement of over a VAI only linear model (r2 = 0.73). The inclusion of CSC metrics in canopy light absorption models could increase confidence in predictions of biogeochemical cycles and energy balance.
Plain Language Summary
Our work shows that it is not only how many leaves there are in a forest that determines how much light the forest can absorb, but also how those leaves are arranged. More complex forests are able to more thoroughly absorb light.
Key Points
We use terrestrial LiDAR to quantify canopy structural complexity at eight National Ecological Network (NEON) and three university field sites
Canopy structural complexity (CSC) metrics and vegetation area index (VAI) explained 89% of the variance in light absorption among sites
Multidimensional descriptions of CSC, if scalable, may provide a basis for better representation of light absorption in ecosystem models</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JG004256</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2295-3131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-8953 |
ispartof | Journal of geophysical research. Biogeosciences, 2018-04, Vol.123 (4), p.1387-1405 |
issn | 2169-8953 2169-8961 |
language | eng |
recordid | cdi_proquest_journals_2037081417 |
source | Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Absorption Area Biogeochemical cycle Biogeochemical cycles Biogeochemistry Canopies Canopy canopy structure Complexity Confidence Ecological monitoring Educational institutions Electromagnetic absorption Energy balance Forests Interactions Leaf area Leaves LiDAR Light Light absorption Light scattering Mathematical models Modelling National Ecological Observatory Network fpar Photosynthetically active radiation Physical sciences radiative transfer Surveying Vegetation |
title | Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forest%20Canopy%20Structural%20Complexity%20and%20Light%20Absorption%20Relationships%20at%20the%20Subcontinental%20Scale&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Atkins,%20J.%20W.&rft.date=2018-04&rft.volume=123&rft.issue=4&rft.spage=1387&rft.epage=1405&rft.pages=1387-1405&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1002/2017JG004256&rft_dat=%3Cproquest_cross%3E2037081417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037081417&rft_id=info:pmid/&rfr_iscdi=true |