Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors
Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelect...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2018-05, Vol.43 (5), p.340-346 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 5 |
container_start_page | 340 |
container_title | MRS bulletin |
container_volume | 43 |
creator | Mikolajick, Thomas Slesazeck, Stefan Park, Min Hyuk Schroeder, Uwe |
description | Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system. |
doi_str_mv | 10.1557/mrs.2018.92 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036835368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2018_92</cupid><sourcerecordid>2036835368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsn_8CCR03Nx2aTHKVYFQpe9Bz2Y1JTuk2dbEH_vSktiCJeZpiZZ95hXkIuOZtwpfRtj2kiGDcTK47IiFtpKC-FOiYjZoykurLlKTlLackYV0yrEYkzQIywgnbA0BZvtV-HbV_Ej9BB4SMW_scc63UXe1q3LaRU9NBHDJCK3P0F-gCrjoL3uS6GvJZCGiKmc3Li61WCi0Mek9fZ_cv0kc6fH56md3PaltIO1Fptlc2fyKoyXFWNEUY2XDMmZcsYq0wForSMKa1LpppOll4bC9ZyL6Cr5Zhc7XU3GN-3kAa3jFtc55NOMFkZqXZhTK73VIsxJQTvNhj6Gj8dZ27nqMuOup2jzopM3-zplKn1AvBb82-cHsTrvsHQLeB__gteOYe3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036835368</pqid></control><display><type>article</type><title>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Mikolajick, Thomas ; Slesazeck, Stefan ; Park, Min Hyuk ; Schroeder, Uwe</creator><creatorcontrib>Mikolajick, Thomas ; Slesazeck, Stefan ; Park, Min Hyuk ; Schroeder, Uwe</creatorcontrib><description>Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2018.92</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Atomic layer epitaxy ; Capacitors ; Characterization and Evaluation of Materials ; CMOS ; Coercivity ; Endurance ; Energy Materials ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Field effect transistors ; Hafnium oxide ; Information storage ; Laboratories ; Materials Engineering ; Materials for Advanced Semiconductor Memories ; Materials Science ; Metal oxide semiconductors ; Nanotechnology ; Phase transitions ; Random access memory ; Scaling ; Semiconductor devices ; Silicon</subject><ispartof>MRS bulletin, 2018-05, Vol.43 (5), p.340-346</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</citedby><cites>FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2018.92$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769418000921/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Mikolajick, Thomas</creatorcontrib><creatorcontrib>Slesazeck, Stefan</creatorcontrib><creatorcontrib>Park, Min Hyuk</creatorcontrib><creatorcontrib>Schroeder, Uwe</creatorcontrib><title>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.</description><subject>Applied and Technical Physics</subject><subject>Atomic layer epitaxy</subject><subject>Capacitors</subject><subject>Characterization and Evaluation of Materials</subject><subject>CMOS</subject><subject>Coercivity</subject><subject>Endurance</subject><subject>Energy Materials</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Field effect transistors</subject><subject>Hafnium oxide</subject><subject>Information storage</subject><subject>Laboratories</subject><subject>Materials Engineering</subject><subject>Materials for Advanced Semiconductor Memories</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Random access memory</subject><subject>Scaling</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKsn_8CCR03Nx2aTHKVYFQpe9Bz2Y1JTuk2dbEH_vSktiCJeZpiZZ95hXkIuOZtwpfRtj2kiGDcTK47IiFtpKC-FOiYjZoykurLlKTlLackYV0yrEYkzQIywgnbA0BZvtV-HbV_Ej9BB4SMW_scc63UXe1q3LaRU9NBHDJCK3P0F-gCrjoL3uS6GvJZCGiKmc3Li61WCi0Mek9fZ_cv0kc6fH56md3PaltIO1Fptlc2fyKoyXFWNEUY2XDMmZcsYq0wForSMKa1LpppOll4bC9ZyL6Cr5Zhc7XU3GN-3kAa3jFtc55NOMFkZqXZhTK73VIsxJQTvNhj6Gj8dZ27nqMuOup2jzopM3-zplKn1AvBb82-cHsTrvsHQLeB__gteOYe3</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mikolajick, Thomas</creator><creator>Slesazeck, Stefan</creator><creator>Park, Min Hyuk</creator><creator>Schroeder, Uwe</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180501</creationdate><title>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</title><author>Mikolajick, Thomas ; Slesazeck, Stefan ; Park, Min Hyuk ; Schroeder, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic layer epitaxy</topic><topic>Capacitors</topic><topic>Characterization and Evaluation of Materials</topic><topic>CMOS</topic><topic>Coercivity</topic><topic>Endurance</topic><topic>Energy Materials</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Field effect transistors</topic><topic>Hafnium oxide</topic><topic>Information storage</topic><topic>Laboratories</topic><topic>Materials Engineering</topic><topic>Materials for Advanced Semiconductor Memories</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Random access memory</topic><topic>Scaling</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikolajick, Thomas</creatorcontrib><creatorcontrib>Slesazeck, Stefan</creatorcontrib><creatorcontrib>Park, Min Hyuk</creatorcontrib><creatorcontrib>Schroeder, Uwe</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikolajick, Thomas</au><au>Slesazeck, Stefan</au><au>Park, Min Hyuk</au><au>Schroeder, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>43</volume><issue>5</issue><spage>340</spage><epage>346</epage><pages>340-346</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2018.92</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2018-05, Vol.43 (5), p.340-346 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_journals_2036835368 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Applied and Technical Physics Atomic layer epitaxy Capacitors Characterization and Evaluation of Materials CMOS Coercivity Endurance Energy Materials Ferroelectric materials Ferroelectricity Ferroelectrics Field effect transistors Hafnium oxide Information storage Laboratories Materials Engineering Materials for Advanced Semiconductor Memories Materials Science Metal oxide semiconductors Nanotechnology Phase transitions Random access memory Scaling Semiconductor devices Silicon |
title | Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20hafnium%20oxide%20for%20ferroelectric%20random-access%20memories%20and%20ferroelectric%20field-effect%20transistors&rft.jtitle=MRS%20bulletin&rft.au=Mikolajick,%20Thomas&rft.date=2018-05-01&rft.volume=43&rft.issue=5&rft.spage=340&rft.epage=346&rft.pages=340-346&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2018.92&rft_dat=%3Cproquest_cross%3E2036835368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036835368&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2018_92&rfr_iscdi=true |