Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors

Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2018-05, Vol.43 (5), p.340-346
Hauptverfasser: Mikolajick, Thomas, Slesazeck, Stefan, Park, Min Hyuk, Schroeder, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 5
container_start_page 340
container_title MRS bulletin
container_volume 43
creator Mikolajick, Thomas
Slesazeck, Stefan
Park, Min Hyuk
Schroeder, Uwe
description Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.
doi_str_mv 10.1557/mrs.2018.92
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036835368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2018_92</cupid><sourcerecordid>2036835368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsn_8CCR03Nx2aTHKVYFQpe9Bz2Y1JTuk2dbEH_vSktiCJeZpiZZ95hXkIuOZtwpfRtj2kiGDcTK47IiFtpKC-FOiYjZoykurLlKTlLackYV0yrEYkzQIywgnbA0BZvtV-HbV_Ej9BB4SMW_scc63UXe1q3LaRU9NBHDJCK3P0F-gCrjoL3uS6GvJZCGiKmc3Li61WCi0Mek9fZ_cv0kc6fH56md3PaltIO1Fptlc2fyKoyXFWNEUY2XDMmZcsYq0wForSMKa1LpppOll4bC9ZyL6Cr5Zhc7XU3GN-3kAa3jFtc55NOMFkZqXZhTK73VIsxJQTvNhj6Gj8dZ27nqMuOup2jzopM3-zplKn1AvBb82-cHsTrvsHQLeB__gteOYe3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036835368</pqid></control><display><type>article</type><title>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Mikolajick, Thomas ; Slesazeck, Stefan ; Park, Min Hyuk ; Schroeder, Uwe</creator><creatorcontrib>Mikolajick, Thomas ; Slesazeck, Stefan ; Park, Min Hyuk ; Schroeder, Uwe</creatorcontrib><description>Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2018.92</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Atomic layer epitaxy ; Capacitors ; Characterization and Evaluation of Materials ; CMOS ; Coercivity ; Endurance ; Energy Materials ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Field effect transistors ; Hafnium oxide ; Information storage ; Laboratories ; Materials Engineering ; Materials for Advanced Semiconductor Memories ; Materials Science ; Metal oxide semiconductors ; Nanotechnology ; Phase transitions ; Random access memory ; Scaling ; Semiconductor devices ; Silicon</subject><ispartof>MRS bulletin, 2018-05, Vol.43 (5), p.340-346</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</citedby><cites>FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2018.92$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769418000921/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Mikolajick, Thomas</creatorcontrib><creatorcontrib>Slesazeck, Stefan</creatorcontrib><creatorcontrib>Park, Min Hyuk</creatorcontrib><creatorcontrib>Schroeder, Uwe</creatorcontrib><title>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.</description><subject>Applied and Technical Physics</subject><subject>Atomic layer epitaxy</subject><subject>Capacitors</subject><subject>Characterization and Evaluation of Materials</subject><subject>CMOS</subject><subject>Coercivity</subject><subject>Endurance</subject><subject>Energy Materials</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Field effect transistors</subject><subject>Hafnium oxide</subject><subject>Information storage</subject><subject>Laboratories</subject><subject>Materials Engineering</subject><subject>Materials for Advanced Semiconductor Memories</subject><subject>Materials Science</subject><subject>Metal oxide semiconductors</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Random access memory</subject><subject>Scaling</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKsn_8CCR03Nx2aTHKVYFQpe9Bz2Y1JTuk2dbEH_vSktiCJeZpiZZ95hXkIuOZtwpfRtj2kiGDcTK47IiFtpKC-FOiYjZoykurLlKTlLackYV0yrEYkzQIywgnbA0BZvtV-HbV_Ej9BB4SMW_scc63UXe1q3LaRU9NBHDJCK3P0F-gCrjoL3uS6GvJZCGiKmc3Li61WCi0Mek9fZ_cv0kc6fH56md3PaltIO1Fptlc2fyKoyXFWNEUY2XDMmZcsYq0wForSMKa1LpppOll4bC9ZyL6Cr5Zhc7XU3GN-3kAa3jFtc55NOMFkZqXZhTK73VIsxJQTvNhj6Gj8dZ27nqMuOup2jzopM3-zplKn1AvBb82-cHsTrvsHQLeB__gteOYe3</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mikolajick, Thomas</creator><creator>Slesazeck, Stefan</creator><creator>Park, Min Hyuk</creator><creator>Schroeder, Uwe</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180501</creationdate><title>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</title><author>Mikolajick, Thomas ; Slesazeck, Stefan ; Park, Min Hyuk ; Schroeder, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9979590183668156b8283b170033c000686e24900577405bd34f789e991f2eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic layer epitaxy</topic><topic>Capacitors</topic><topic>Characterization and Evaluation of Materials</topic><topic>CMOS</topic><topic>Coercivity</topic><topic>Endurance</topic><topic>Energy Materials</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Field effect transistors</topic><topic>Hafnium oxide</topic><topic>Information storage</topic><topic>Laboratories</topic><topic>Materials Engineering</topic><topic>Materials for Advanced Semiconductor Memories</topic><topic>Materials Science</topic><topic>Metal oxide semiconductors</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Random access memory</topic><topic>Scaling</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikolajick, Thomas</creatorcontrib><creatorcontrib>Slesazeck, Stefan</creatorcontrib><creatorcontrib>Park, Min Hyuk</creatorcontrib><creatorcontrib>Schroeder, Uwe</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikolajick, Thomas</au><au>Slesazeck, Stefan</au><au>Park, Min Hyuk</au><au>Schroeder, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>43</volume><issue>5</issue><spage>340</spage><epage>346</epage><pages>340-346</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2018.92</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2018-05, Vol.43 (5), p.340-346
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_2036835368
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Applied and Technical Physics
Atomic layer epitaxy
Capacitors
Characterization and Evaluation of Materials
CMOS
Coercivity
Endurance
Energy Materials
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Field effect transistors
Hafnium oxide
Information storage
Laboratories
Materials Engineering
Materials for Advanced Semiconductor Memories
Materials Science
Metal oxide semiconductors
Nanotechnology
Phase transitions
Random access memory
Scaling
Semiconductor devices
Silicon
title Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20hafnium%20oxide%20for%20ferroelectric%20random-access%20memories%20and%20ferroelectric%20field-effect%20transistors&rft.jtitle=MRS%20bulletin&rft.au=Mikolajick,%20Thomas&rft.date=2018-05-01&rft.volume=43&rft.issue=5&rft.spage=340&rft.epage=346&rft.pages=340-346&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2018.92&rft_dat=%3Cproquest_cross%3E2036835368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036835368&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2018_92&rfr_iscdi=true