Neuron inspired data encoding memristive multi-level memory cell

Mapping neuro-inspired algorithms to sensor backplanes of on-chip hardware require shifting the signal processing from digital to the analog domain, demanding memory technologies beyond conventional CMOS binary storage units. Using memristors for building analog data storage is one of the promising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analog integrated circuits and signal processing 2018-06, Vol.95 (3), p.429-434
Hauptverfasser: Irmanova, Aidana, James, Alex Pappachen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 3
container_start_page 429
container_title Analog integrated circuits and signal processing
container_volume 95
creator Irmanova, Aidana
James, Alex Pappachen
description Mapping neuro-inspired algorithms to sensor backplanes of on-chip hardware require shifting the signal processing from digital to the analog domain, demanding memory technologies beyond conventional CMOS binary storage units. Using memristors for building analog data storage is one of the promising approaches amongst emerging non-volatile memory technologies. Recently, a memristive multi-level memory cell for storing discrete analog values has been developed in which memory system is implemented combining memristors in voltage divider configuration. In given example, the memory cell of 3 sub-cells with a memristor in each was programmed to store ternary bits which overall achieved 10 and 27 discrete voltage levels. However, for further use of proposed memory cell in analog signal processing circuits data encoder is required to generate control voltages for programming memristors to store discrete analog values. In this paper, we present the design and performance analysis of data encoder that generates write pattern signals for 10 level memristive memory.
doi_str_mv 10.1007/s10470-018-1155-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036806571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036806571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7349bde4debf435fbb83ff7a037d436706d93c4de8e203134b04b95e59be24ab3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8Fz9FJkzTNTVn8gkUveg5NM12y9GNN2oXdX2-WCp48Dcy8zzvwEHLD4I4BqPvIQCigwErKmJT0cEIWTCpOmVb6lCxA55Iy4HBOLmLcAECuBCzIwztOYegz38etD-gyV41Vhn09ON-vsw674OPod5h1Uzt62uIO2-N6CPusxra9ImdN1Ua8_p2X5Ov56XP5SlcfL2_LxxWtudQjVVxo61A4tI3gsrG25E2jKuDKCV4oKJzmdTqXmANnXFgQVkuU2mIuKssvye3cuw3D94RxNJthCn16aRJQlFBIxVKKzak6DDEGbMw2-K4Ke8PAHEWZWZRJosxRlDkkJp-ZmLL9GsNf8__QD9L5a-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036806571</pqid></control><display><type>article</type><title>Neuron inspired data encoding memristive multi-level memory cell</title><source>SpringerLink Journals - AutoHoldings</source><creator>Irmanova, Aidana ; James, Alex Pappachen</creator><creatorcontrib>Irmanova, Aidana ; James, Alex Pappachen</creatorcontrib><description>Mapping neuro-inspired algorithms to sensor backplanes of on-chip hardware require shifting the signal processing from digital to the analog domain, demanding memory technologies beyond conventional CMOS binary storage units. Using memristors for building analog data storage is one of the promising approaches amongst emerging non-volatile memory technologies. Recently, a memristive multi-level memory cell for storing discrete analog values has been developed in which memory system is implemented combining memristors in voltage divider configuration. In given example, the memory cell of 3 sub-cells with a memristor in each was programmed to store ternary bits which overall achieved 10 and 27 discrete voltage levels. However, for further use of proposed memory cell in analog signal processing circuits data encoder is required to generate control voltages for programming memristors to store discrete analog values. In this paper, we present the design and performance analysis of data encoder that generates write pattern signals for 10 level memristive memory.</description><identifier>ISSN: 0925-1030</identifier><identifier>EISSN: 1573-1979</identifier><identifier>DOI: 10.1007/s10470-018-1155-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analog circuits ; Analog data ; Backplanes ; Circuits and Systems ; CMOS ; Computer memory ; Data storage ; Electric potential ; Electrical Engineering ; Engineering ; Memristors ; Random access memory ; Signal processing ; Signal,Image and Speech Processing ; Storage units</subject><ispartof>Analog integrated circuits and signal processing, 2018-06, Vol.95 (3), p.429-434</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7349bde4debf435fbb83ff7a037d436706d93c4de8e203134b04b95e59be24ab3</citedby><cites>FETCH-LOGICAL-c359t-7349bde4debf435fbb83ff7a037d436706d93c4de8e203134b04b95e59be24ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10470-018-1155-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10470-018-1155-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Irmanova, Aidana</creatorcontrib><creatorcontrib>James, Alex Pappachen</creatorcontrib><title>Neuron inspired data encoding memristive multi-level memory cell</title><title>Analog integrated circuits and signal processing</title><addtitle>Analog Integr Circ Sig Process</addtitle><description>Mapping neuro-inspired algorithms to sensor backplanes of on-chip hardware require shifting the signal processing from digital to the analog domain, demanding memory technologies beyond conventional CMOS binary storage units. Using memristors for building analog data storage is one of the promising approaches amongst emerging non-volatile memory technologies. Recently, a memristive multi-level memory cell for storing discrete analog values has been developed in which memory system is implemented combining memristors in voltage divider configuration. In given example, the memory cell of 3 sub-cells with a memristor in each was programmed to store ternary bits which overall achieved 10 and 27 discrete voltage levels. However, for further use of proposed memory cell in analog signal processing circuits data encoder is required to generate control voltages for programming memristors to store discrete analog values. In this paper, we present the design and performance analysis of data encoder that generates write pattern signals for 10 level memristive memory.</description><subject>Analog circuits</subject><subject>Analog data</subject><subject>Backplanes</subject><subject>Circuits and Systems</subject><subject>CMOS</subject><subject>Computer memory</subject><subject>Data storage</subject><subject>Electric potential</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Memristors</subject><subject>Random access memory</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Storage units</subject><issn>0925-1030</issn><issn>1573-1979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouH78AG8Fz9FJkzTNTVn8gkUveg5NM12y9GNN2oXdX2-WCp48Dcy8zzvwEHLD4I4BqPvIQCigwErKmJT0cEIWTCpOmVb6lCxA55Iy4HBOLmLcAECuBCzIwztOYegz38etD-gyV41Vhn09ON-vsw674OPod5h1Uzt62uIO2-N6CPusxra9ImdN1Ua8_p2X5Ov56XP5SlcfL2_LxxWtudQjVVxo61A4tI3gsrG25E2jKuDKCV4oKJzmdTqXmANnXFgQVkuU2mIuKssvye3cuw3D94RxNJthCn16aRJQlFBIxVKKzak6DDEGbMw2-K4Ke8PAHEWZWZRJosxRlDkkJp-ZmLL9GsNf8__QD9L5a-U</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Irmanova, Aidana</creator><creator>James, Alex Pappachen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TG</scope><scope>8FD</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20180601</creationdate><title>Neuron inspired data encoding memristive multi-level memory cell</title><author>Irmanova, Aidana ; James, Alex Pappachen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7349bde4debf435fbb83ff7a037d436706d93c4de8e203134b04b95e59be24ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analog circuits</topic><topic>Analog data</topic><topic>Backplanes</topic><topic>Circuits and Systems</topic><topic>CMOS</topic><topic>Computer memory</topic><topic>Data storage</topic><topic>Electric potential</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Memristors</topic><topic>Random access memory</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Storage units</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irmanova, Aidana</creatorcontrib><creatorcontrib>James, Alex Pappachen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analog integrated circuits and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irmanova, Aidana</au><au>James, Alex Pappachen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuron inspired data encoding memristive multi-level memory cell</atitle><jtitle>Analog integrated circuits and signal processing</jtitle><stitle>Analog Integr Circ Sig Process</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>95</volume><issue>3</issue><spage>429</spage><epage>434</epage><pages>429-434</pages><issn>0925-1030</issn><eissn>1573-1979</eissn><abstract>Mapping neuro-inspired algorithms to sensor backplanes of on-chip hardware require shifting the signal processing from digital to the analog domain, demanding memory technologies beyond conventional CMOS binary storage units. Using memristors for building analog data storage is one of the promising approaches amongst emerging non-volatile memory technologies. Recently, a memristive multi-level memory cell for storing discrete analog values has been developed in which memory system is implemented combining memristors in voltage divider configuration. In given example, the memory cell of 3 sub-cells with a memristor in each was programmed to store ternary bits which overall achieved 10 and 27 discrete voltage levels. However, for further use of proposed memory cell in analog signal processing circuits data encoder is required to generate control voltages for programming memristors to store discrete analog values. In this paper, we present the design and performance analysis of data encoder that generates write pattern signals for 10 level memristive memory.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10470-018-1155-z</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-1030
ispartof Analog integrated circuits and signal processing, 2018-06, Vol.95 (3), p.429-434
issn 0925-1030
1573-1979
language eng
recordid cdi_proquest_journals_2036806571
source SpringerLink Journals - AutoHoldings
subjects Analog circuits
Analog data
Backplanes
Circuits and Systems
CMOS
Computer memory
Data storage
Electric potential
Electrical Engineering
Engineering
Memristors
Random access memory
Signal processing
Signal,Image and Speech Processing
Storage units
title Neuron inspired data encoding memristive multi-level memory cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuron%20inspired%20data%20encoding%20memristive%20multi-level%20memory%20cell&rft.jtitle=Analog%20integrated%20circuits%20and%20signal%20processing&rft.au=Irmanova,%20Aidana&rft.date=2018-06-01&rft.volume=95&rft.issue=3&rft.spage=429&rft.epage=434&rft.pages=429-434&rft.issn=0925-1030&rft.eissn=1573-1979&rft_id=info:doi/10.1007/s10470-018-1155-z&rft_dat=%3Cproquest_cross%3E2036806571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036806571&rft_id=info:pmid/&rfr_iscdi=true