A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment

Aims The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Methods and Results Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2018-06, Vol.124 (6), p.1566-1579
Hauptverfasser: Shahid, M., Akram, M.S., Khan, M.A., Zubair, M., Shah, S.M., Ismail, M., Shabir, G., Basheer, S., Aslam, K., Tariq, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 6
container_start_page 1566
container_title Journal of applied microbiology
container_volume 124
creator Shahid, M.
Akram, M.S.
Khan, M.A.
Zubair, M.
Shah, S.M.
Ismail, M.
Shabir, G.
Basheer, S.
Aslam, K.
Tariq, M.
description Aims The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Methods and Results Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere. Conclusion Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment. Significance and Impact of the study Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.
doi_str_mv 10.1111/jam.13732
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036673783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036673783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EoqWw4AWQJVYsMvW_k-WoKn9qBVJhHTnxzYxHiR1sp2V2PAJPwkPxJHg6hR134Xtlf-dcyQehl5SsaKnznZlWlGvOHqFTypWsmNLs8f0sKkk0O0HPUtoRQjmR6ik6YY0QgtfkFP1a43m7z6EDD4PrnRlxytE4jz-PxofJ9TF0bplwmlf4-uZm_fvHT0pwjm6zgQgWh-_Omuxu4aCDlHA55uDT4WaCfmu8S1PCxtvysllGk4sobwFvYrjLWxwGPIPBc9mWE168hYidt0tfsGRG5wGDv3Ux-Al8fo6eDGZM8OKhn6Gvby-_XLyvrj69-3Cxvqp6LjmreE2lJE1vBSVU1qpTAgbeCE4HKTSTtVbENoMahKZNp6kF2RvLDOeyg1oYfoZeH33nGL4tkHK7C0v0ZWXLCFdKc13zQr05UuWTUoowtHN0k4n7lpL2kExbkmnvkynsqwfHpZvA_iP_RlGA8yNw50bY_9-p_bi-Plr-Ae7im14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036673783</pqid></control><display><type>article</type><title>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shahid, M. ; Akram, M.S. ; Khan, M.A. ; Zubair, M. ; Shah, S.M. ; Ismail, M. ; Shabir, G. ; Basheer, S. ; Aslam, K. ; Tariq, M.</creator><creatorcontrib>Shahid, M. ; Akram, M.S. ; Khan, M.A. ; Zubair, M. ; Shah, S.M. ; Ismail, M. ; Shabir, G. ; Basheer, S. ; Aslam, K. ; Tariq, M.</creatorcontrib><description>Aims The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Methods and Results Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere. Conclusion Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment. Significance and Impact of the study Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.13732</identifier><identifier>PMID: 29444380</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>antioxidants ; Carboxylic acids ; Cell density ; Chlorophyll ; Environmental impact ; Enzymatic activity ; Impact damage ; Inoculation ; Nutrient content ; Nutrients ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; pea ; PGPR ; Pisum sativum - drug effects ; Pisum sativum - microbiology ; Pisum sativum - physiology ; Planococcaceae - isolation &amp; purification ; Planococcaceae - physiology ; Planomicrobium sp ; Plants (botany) ; Proteins ; Reactive oxygen species ; Rhizosphere ; Rifampin ; rRNA 16S ; Saline environments ; Salinity ; Salinity effects ; Salt Tolerance - physiology ; Salt-Tolerant Plants - drug effects ; Salt-Tolerant Plants - microbiology ; Salt-Tolerant Plants - physiology ; Sodium chloride ; Sodium Chloride - toxicity ; Solubilization ; Translocation</subject><ispartof>Journal of applied microbiology, 2018-06, Vol.124 (6), p.1566-1579</ispartof><rights>2018 The Society for Applied Microbiology</rights><rights>2018 The Society for Applied Microbiology.</rights><rights>Copyright © 2018 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</citedby><cites>FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.13732$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.13732$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29444380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahid, M.</creatorcontrib><creatorcontrib>Akram, M.S.</creatorcontrib><creatorcontrib>Khan, M.A.</creatorcontrib><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Shah, S.M.</creatorcontrib><creatorcontrib>Ismail, M.</creatorcontrib><creatorcontrib>Shabir, G.</creatorcontrib><creatorcontrib>Basheer, S.</creatorcontrib><creatorcontrib>Aslam, K.</creatorcontrib><creatorcontrib>Tariq, M.</creatorcontrib><title>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Methods and Results Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere. Conclusion Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment. Significance and Impact of the study Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.</description><subject>antioxidants</subject><subject>Carboxylic acids</subject><subject>Cell density</subject><subject>Chlorophyll</subject><subject>Environmental impact</subject><subject>Enzymatic activity</subject><subject>Impact damage</subject><subject>Inoculation</subject><subject>Nutrient content</subject><subject>Nutrients</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>pea</subject><subject>PGPR</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - microbiology</subject><subject>Pisum sativum - physiology</subject><subject>Planococcaceae - isolation &amp; purification</subject><subject>Planococcaceae - physiology</subject><subject>Planomicrobium sp</subject><subject>Plants (botany)</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Rhizosphere</subject><subject>Rifampin</subject><subject>rRNA 16S</subject><subject>Saline environments</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salt Tolerance - physiology</subject><subject>Salt-Tolerant Plants - drug effects</subject><subject>Salt-Tolerant Plants - microbiology</subject><subject>Salt-Tolerant Plants - physiology</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - toxicity</subject><subject>Solubilization</subject><subject>Translocation</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EoqWw4AWQJVYsMvW_k-WoKn9qBVJhHTnxzYxHiR1sp2V2PAJPwkPxJHg6hR134Xtlf-dcyQehl5SsaKnznZlWlGvOHqFTypWsmNLs8f0sKkk0O0HPUtoRQjmR6ik6YY0QgtfkFP1a43m7z6EDD4PrnRlxytE4jz-PxofJ9TF0bplwmlf4-uZm_fvHT0pwjm6zgQgWh-_Omuxu4aCDlHA55uDT4WaCfmu8S1PCxtvysllGk4sobwFvYrjLWxwGPIPBc9mWE168hYidt0tfsGRG5wGDv3Ux-Al8fo6eDGZM8OKhn6Gvby-_XLyvrj69-3Cxvqp6LjmreE2lJE1vBSVU1qpTAgbeCE4HKTSTtVbENoMahKZNp6kF2RvLDOeyg1oYfoZeH33nGL4tkHK7C0v0ZWXLCFdKc13zQr05UuWTUoowtHN0k4n7lpL2kExbkmnvkynsqwfHpZvA_iP_RlGA8yNw50bY_9-p_bi-Plr-Ae7im14</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Shahid, M.</creator><creator>Akram, M.S.</creator><creator>Khan, M.A.</creator><creator>Zubair, M.</creator><creator>Shah, S.M.</creator><creator>Ismail, M.</creator><creator>Shabir, G.</creator><creator>Basheer, S.</creator><creator>Aslam, K.</creator><creator>Tariq, M.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201806</creationdate><title>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</title><author>Shahid, M. ; Akram, M.S. ; Khan, M.A. ; Zubair, M. ; Shah, S.M. ; Ismail, M. ; Shabir, G. ; Basheer, S. ; Aslam, K. ; Tariq, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>antioxidants</topic><topic>Carboxylic acids</topic><topic>Cell density</topic><topic>Chlorophyll</topic><topic>Environmental impact</topic><topic>Enzymatic activity</topic><topic>Impact damage</topic><topic>Inoculation</topic><topic>Nutrient content</topic><topic>Nutrients</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>pea</topic><topic>PGPR</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - microbiology</topic><topic>Pisum sativum - physiology</topic><topic>Planococcaceae - isolation &amp; purification</topic><topic>Planococcaceae - physiology</topic><topic>Planomicrobium sp</topic><topic>Plants (botany)</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Rhizosphere</topic><topic>Rifampin</topic><topic>rRNA 16S</topic><topic>Saline environments</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salt Tolerance - physiology</topic><topic>Salt-Tolerant Plants - drug effects</topic><topic>Salt-Tolerant Plants - microbiology</topic><topic>Salt-Tolerant Plants - physiology</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - toxicity</topic><topic>Solubilization</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahid, M.</creatorcontrib><creatorcontrib>Akram, M.S.</creatorcontrib><creatorcontrib>Khan, M.A.</creatorcontrib><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Shah, S.M.</creatorcontrib><creatorcontrib>Ismail, M.</creatorcontrib><creatorcontrib>Shabir, G.</creatorcontrib><creatorcontrib>Basheer, S.</creatorcontrib><creatorcontrib>Aslam, K.</creatorcontrib><creatorcontrib>Tariq, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahid, M.</au><au>Akram, M.S.</au><au>Khan, M.A.</au><au>Zubair, M.</au><au>Shah, S.M.</au><au>Ismail, M.</au><au>Shabir, G.</au><au>Basheer, S.</au><au>Aslam, K.</au><au>Tariq, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2018-06</date><risdate>2018</risdate><volume>124</volume><issue>6</issue><spage>1566</spage><epage>1579</epage><pages>1566-1579</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Methods and Results Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere. Conclusion Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment. Significance and Impact of the study Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29444380</pmid><doi>10.1111/jam.13732</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2018-06, Vol.124 (6), p.1566-1579
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_journals_2036673783
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects antioxidants
Carboxylic acids
Cell density
Chlorophyll
Environmental impact
Enzymatic activity
Impact damage
Inoculation
Nutrient content
Nutrients
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - physiology
pea
PGPR
Pisum sativum - drug effects
Pisum sativum - microbiology
Pisum sativum - physiology
Planococcaceae - isolation & purification
Planococcaceae - physiology
Planomicrobium sp
Plants (botany)
Proteins
Reactive oxygen species
Rhizosphere
Rifampin
rRNA 16S
Saline environments
Salinity
Salinity effects
Salt Tolerance - physiology
Salt-Tolerant Plants - drug effects
Salt-Tolerant Plants - microbiology
Salt-Tolerant Plants - physiology
Sodium chloride
Sodium Chloride - toxicity
Solubilization
Translocation
title A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phytobeneficial%20strain%20Planomicrobium%20sp.%20MSSA%E2%80%9010%20triggered%20oxidative%20stress%20responsive%20mechanisms%20and%20regulated%20the%20growth%20of%20pea%20plants%20under%20induced%20saline%20environment&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Shahid,%20M.&rft.date=2018-06&rft.volume=124&rft.issue=6&rft.spage=1566&rft.epage=1579&rft.pages=1566-1579&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.13732&rft_dat=%3Cproquest_cross%3E2036673783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036673783&rft_id=info:pmid/29444380&rfr_iscdi=true