A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment
Aims The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels. Methods and Results Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2018-06, Vol.124 (6), p.1566-1579 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 6 |
container_start_page | 1566 |
container_title | Journal of applied microbiology |
container_volume | 124 |
creator | Shahid, M. Akram, M.S. Khan, M.A. Zubair, M. Shah, S.M. Ismail, M. Shabir, G. Basheer, S. Aslam, K. Tariq, M. |
description | Aims
The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels.
Methods and Results
Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere.
Conclusion
Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment.
Significance and Impact of the study
Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity. |
doi_str_mv | 10.1111/jam.13732 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036673783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036673783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EoqWw4AWQJVYsMvW_k-WoKn9qBVJhHTnxzYxHiR1sp2V2PAJPwkPxJHg6hR134Xtlf-dcyQehl5SsaKnznZlWlGvOHqFTypWsmNLs8f0sKkk0O0HPUtoRQjmR6ik6YY0QgtfkFP1a43m7z6EDD4PrnRlxytE4jz-PxofJ9TF0bplwmlf4-uZm_fvHT0pwjm6zgQgWh-_Omuxu4aCDlHA55uDT4WaCfmu8S1PCxtvysllGk4sobwFvYrjLWxwGPIPBc9mWE168hYidt0tfsGRG5wGDv3Ux-Al8fo6eDGZM8OKhn6Gvby-_XLyvrj69-3Cxvqp6LjmreE2lJE1vBSVU1qpTAgbeCE4HKTSTtVbENoMahKZNp6kF2RvLDOeyg1oYfoZeH33nGL4tkHK7C0v0ZWXLCFdKc13zQr05UuWTUoowtHN0k4n7lpL2kExbkmnvkynsqwfHpZvA_iP_RlGA8yNw50bY_9-p_bi-Plr-Ae7im14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036673783</pqid></control><display><type>article</type><title>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shahid, M. ; Akram, M.S. ; Khan, M.A. ; Zubair, M. ; Shah, S.M. ; Ismail, M. ; Shabir, G. ; Basheer, S. ; Aslam, K. ; Tariq, M.</creator><creatorcontrib>Shahid, M. ; Akram, M.S. ; Khan, M.A. ; Zubair, M. ; Shah, S.M. ; Ismail, M. ; Shabir, G. ; Basheer, S. ; Aslam, K. ; Tariq, M.</creatorcontrib><description>Aims
The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels.
Methods and Results
Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere.
Conclusion
Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment.
Significance and Impact of the study
Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.13732</identifier><identifier>PMID: 29444380</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>antioxidants ; Carboxylic acids ; Cell density ; Chlorophyll ; Environmental impact ; Enzymatic activity ; Impact damage ; Inoculation ; Nutrient content ; Nutrients ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; pea ; PGPR ; Pisum sativum - drug effects ; Pisum sativum - microbiology ; Pisum sativum - physiology ; Planococcaceae - isolation & purification ; Planococcaceae - physiology ; Planomicrobium sp ; Plants (botany) ; Proteins ; Reactive oxygen species ; Rhizosphere ; Rifampin ; rRNA 16S ; Saline environments ; Salinity ; Salinity effects ; Salt Tolerance - physiology ; Salt-Tolerant Plants - drug effects ; Salt-Tolerant Plants - microbiology ; Salt-Tolerant Plants - physiology ; Sodium chloride ; Sodium Chloride - toxicity ; Solubilization ; Translocation</subject><ispartof>Journal of applied microbiology, 2018-06, Vol.124 (6), p.1566-1579</ispartof><rights>2018 The Society for Applied Microbiology</rights><rights>2018 The Society for Applied Microbiology.</rights><rights>Copyright © 2018 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</citedby><cites>FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.13732$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.13732$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29444380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahid, M.</creatorcontrib><creatorcontrib>Akram, M.S.</creatorcontrib><creatorcontrib>Khan, M.A.</creatorcontrib><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Shah, S.M.</creatorcontrib><creatorcontrib>Ismail, M.</creatorcontrib><creatorcontrib>Shabir, G.</creatorcontrib><creatorcontrib>Basheer, S.</creatorcontrib><creatorcontrib>Aslam, K.</creatorcontrib><creatorcontrib>Tariq, M.</creatorcontrib><title>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims
The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels.
Methods and Results
Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere.
Conclusion
Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment.
Significance and Impact of the study
Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.</description><subject>antioxidants</subject><subject>Carboxylic acids</subject><subject>Cell density</subject><subject>Chlorophyll</subject><subject>Environmental impact</subject><subject>Enzymatic activity</subject><subject>Impact damage</subject><subject>Inoculation</subject><subject>Nutrient content</subject><subject>Nutrients</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>pea</subject><subject>PGPR</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - microbiology</subject><subject>Pisum sativum - physiology</subject><subject>Planococcaceae - isolation & purification</subject><subject>Planococcaceae - physiology</subject><subject>Planomicrobium sp</subject><subject>Plants (botany)</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Rhizosphere</subject><subject>Rifampin</subject><subject>rRNA 16S</subject><subject>Saline environments</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salt Tolerance - physiology</subject><subject>Salt-Tolerant Plants - drug effects</subject><subject>Salt-Tolerant Plants - microbiology</subject><subject>Salt-Tolerant Plants - physiology</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - toxicity</subject><subject>Solubilization</subject><subject>Translocation</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAUhS0EoqWw4AWQJVYsMvW_k-WoKn9qBVJhHTnxzYxHiR1sp2V2PAJPwkPxJHg6hR134Xtlf-dcyQehl5SsaKnznZlWlGvOHqFTypWsmNLs8f0sKkk0O0HPUtoRQjmR6ik6YY0QgtfkFP1a43m7z6EDD4PrnRlxytE4jz-PxofJ9TF0bplwmlf4-uZm_fvHT0pwjm6zgQgWh-_Omuxu4aCDlHA55uDT4WaCfmu8S1PCxtvysllGk4sobwFvYrjLWxwGPIPBc9mWE168hYidt0tfsGRG5wGDv3Ux-Al8fo6eDGZM8OKhn6Gvby-_XLyvrj69-3Cxvqp6LjmreE2lJE1vBSVU1qpTAgbeCE4HKTSTtVbENoMahKZNp6kF2RvLDOeyg1oYfoZeH33nGL4tkHK7C0v0ZWXLCFdKc13zQr05UuWTUoowtHN0k4n7lpL2kExbkmnvkynsqwfHpZvA_iP_RlGA8yNw50bY_9-p_bi-Plr-Ae7im14</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Shahid, M.</creator><creator>Akram, M.S.</creator><creator>Khan, M.A.</creator><creator>Zubair, M.</creator><creator>Shah, S.M.</creator><creator>Ismail, M.</creator><creator>Shabir, G.</creator><creator>Basheer, S.</creator><creator>Aslam, K.</creator><creator>Tariq, M.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201806</creationdate><title>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</title><author>Shahid, M. ; Akram, M.S. ; Khan, M.A. ; Zubair, M. ; Shah, S.M. ; Ismail, M. ; Shabir, G. ; Basheer, S. ; Aslam, K. ; Tariq, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-3815509cd4101586b64ef39431f547258760d9f6f4719b71de5cad2a335be84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>antioxidants</topic><topic>Carboxylic acids</topic><topic>Cell density</topic><topic>Chlorophyll</topic><topic>Environmental impact</topic><topic>Enzymatic activity</topic><topic>Impact damage</topic><topic>Inoculation</topic><topic>Nutrient content</topic><topic>Nutrients</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>pea</topic><topic>PGPR</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - microbiology</topic><topic>Pisum sativum - physiology</topic><topic>Planococcaceae - isolation & purification</topic><topic>Planococcaceae - physiology</topic><topic>Planomicrobium sp</topic><topic>Plants (botany)</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Rhizosphere</topic><topic>Rifampin</topic><topic>rRNA 16S</topic><topic>Saline environments</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salt Tolerance - physiology</topic><topic>Salt-Tolerant Plants - drug effects</topic><topic>Salt-Tolerant Plants - microbiology</topic><topic>Salt-Tolerant Plants - physiology</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - toxicity</topic><topic>Solubilization</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahid, M.</creatorcontrib><creatorcontrib>Akram, M.S.</creatorcontrib><creatorcontrib>Khan, M.A.</creatorcontrib><creatorcontrib>Zubair, M.</creatorcontrib><creatorcontrib>Shah, S.M.</creatorcontrib><creatorcontrib>Ismail, M.</creatorcontrib><creatorcontrib>Shabir, G.</creatorcontrib><creatorcontrib>Basheer, S.</creatorcontrib><creatorcontrib>Aslam, K.</creatorcontrib><creatorcontrib>Tariq, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahid, M.</au><au>Akram, M.S.</au><au>Khan, M.A.</au><au>Zubair, M.</au><au>Shah, S.M.</au><au>Ismail, M.</au><au>Shabir, G.</au><au>Basheer, S.</au><au>Aslam, K.</au><au>Tariq, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2018-06</date><risdate>2018</risdate><volume>124</volume><issue>6</issue><spage>1566</spage><epage>1579</epage><pages>1566-1579</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims
The study was planned to characterize Planomicrobium sp. MSSA‐10 for plant‐beneficial traits and to evaluate its inoculation impact on physiology of pea plants under different salinity levels.
Methods and Results
Strain MSSA‐10 was isolated from pea rhizosphere and identified by the analysis of 16S rRNA gene sequence. The strain demonstrated phosphate solubilization and auxin production up to 2 mol l−1 NaCl and exhibited 1‐aminocyclopropane‐1‐carboxylic acid deaminase activity up to 1·5 mol l−1 salt. In an inoculation experiment under different salinity regimes, a significant increase in growth was observed associated with decreased levels of reactive oxygen species and enhanced antioxidative enzyme activities. The strain also promoted the translocation of nutrients in plants with subsequent increase in chlorophyll and protein contents as compared to noninoculated plants. It has been observed that rifampicin‐resistant derivatives of MSSA‐10 were able to survive for 30 days at optimum cell density with pea rhizosphere.
Conclusion
Growth‐stimulating effect of MSSA‐10 on pea plants may be attributed to its rhizosphere competence, nutrient mobilization and modulation of plant oxidative damage repair mechanisms under saline environment.
Significance and Impact of the study
Planomicrobium sp. MSSA‐10 might be used as potent bioinoculant to relieve pea plants from deleterious effects of salinity.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29444380</pmid><doi>10.1111/jam.13732</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2018-06, Vol.124 (6), p.1566-1579 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_proquest_journals_2036673783 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | antioxidants Carboxylic acids Cell density Chlorophyll Environmental impact Enzymatic activity Impact damage Inoculation Nutrient content Nutrients Oxidative stress Oxidative Stress - drug effects Oxidative Stress - physiology pea PGPR Pisum sativum - drug effects Pisum sativum - microbiology Pisum sativum - physiology Planococcaceae - isolation & purification Planococcaceae - physiology Planomicrobium sp Plants (botany) Proteins Reactive oxygen species Rhizosphere Rifampin rRNA 16S Saline environments Salinity Salinity effects Salt Tolerance - physiology Salt-Tolerant Plants - drug effects Salt-Tolerant Plants - microbiology Salt-Tolerant Plants - physiology Sodium chloride Sodium Chloride - toxicity Solubilization Translocation |
title | A phytobeneficial strain Planomicrobium sp. MSSA‐10 triggered oxidative stress responsive mechanisms and regulated the growth of pea plants under induced saline environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phytobeneficial%20strain%20Planomicrobium%20sp.%20MSSA%E2%80%9010%20triggered%20oxidative%20stress%20responsive%20mechanisms%20and%20regulated%20the%20growth%20of%20pea%20plants%20under%20induced%20saline%20environment&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Shahid,%20M.&rft.date=2018-06&rft.volume=124&rft.issue=6&rft.spage=1566&rft.epage=1579&rft.pages=1566-1579&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.13732&rft_dat=%3Cproquest_cross%3E2036673783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036673783&rft_id=info:pmid/29444380&rfr_iscdi=true |