NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α
Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregul...
Gespeichert in:
Veröffentlicht in: | Basic research in cardiology 2018-07, Vol.113 (4), p.23-20 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 4 |
container_start_page | 23 |
container_title | Basic research in cardiology |
container_volume | 113 |
creator | Zhou, Hao Wang, Jin Zhu, Pingjun Zhu, Hong Toan, Sam Hu, Shunying Ren, Jun Chen, Yundai |
description | Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress. |
doi_str_mv | 10.1007/s00395-018-0682-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2036662776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036662776</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-50dfd8240b6a13c34e897ec681b8ce2c13d881b179e57518c99dd3fb906d54f03</originalsourceid><addsrcrecordid>eNo1kEtOHDEQhq0IFCYkB2CDLLF2Un60216igSFReEgI1iO37e72aPqB3UaaSyFxEc5EJwyrqsVX319VCJ1Q-EkByl8JgOuCAFUEpGKEfkELKnhBqAJ-gBbAAYgSTB2hbyltAKiQkn5FR0yXQhRaLNDL7b04p9g0TTTPZvIJT63H1kQXjMVdsHF4NsnmrYk4JNv6Lhgc_ehjnVMYehz6TY67eSoOuWlxyuMYfUqhb_Dq8fZiSUnnZ9fk3WybhrE1zQ6b3uExDt0w_eNu6ppE_5RD3EO2HXoXg9niOqT_KdUOL_-yt9fv6LA22-R_7OsxelxdPix_k-u7qz_L82syMq4nUoCrnWICKmkot1x4pUtvpaKVsp5Zyp2ae1pqX5QFVVZr53hdaZCuEDXwY3T24Z23fMo-TevNkGM_R64ZcCklK0s5U6d7Klfzlesxhs7E3frzvfwdpBSA4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036662776</pqid></control><display><type>article</type><title>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Zhou, Hao ; Wang, Jin ; Zhu, Pingjun ; Zhu, Hong ; Toan, Sam ; Hu, Shunying ; Ren, Jun ; Chen, Yundai</creator><creatorcontrib>Zhou, Hao ; Wang, Jin ; Zhu, Pingjun ; Zhu, Hong ; Toan, Sam ; Hu, Shunying ; Ren, Jun ; Chen, Yundai</creatorcontrib><description>Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.</description><identifier>ISSN: 0300-8428</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-018-0682-1</identifier><identifier>PMID: 29744594</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Animals ; Apoptosis ; Capillary Permeability ; Casein ; Casein Kinase II - genetics ; Casein Kinase II - metabolism ; Cells, Cultured ; Coronary Vessels - enzymology ; Coronary Vessels - pathology ; Coronary Vessels - physiopathology ; Damage accumulation ; Deactivation ; Disease Models, Animal ; Dynamins - metabolism ; Endothelial Cells - enzymology ; Endothelial Cells - pathology ; Fission ; Genetic Predisposition to Disease ; Heart ; Heart diseases ; Homeostasis ; Inactivation ; Injuries ; Ischemia ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Microvasculature ; Microvessels - enzymology ; Microvessels - pathology ; Microvessels - physiopathology ; Mitochondria ; Mitochondria, Heart - enzymology ; Mitochondria, Heart - pathology ; Mitochondrial Dynamics ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitophagy ; Myocardial Reperfusion Injury - enzymology ; Myocardial Reperfusion Injury - genetics ; Myocardial Reperfusion Injury - pathology ; Myocardial Reperfusion Injury - physiopathology ; Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency ; Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics ; Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism ; Pathogenesis ; Phosphorylation ; Protein Transport ; Protein-serine/threonine kinase ; Regulatory mechanisms (biology) ; Reperfusion ; Rodents ; Signal Transduction ; Structure-function relationships ; Translocation ; Vasodilation</subject><ispartof>Basic research in cardiology, 2018-07, Vol.113 (4), p.23-20</ispartof><rights>Basic Research in Cardiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8138-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29744594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhu, Pingjun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><creatorcontrib>Chen, Yundai</creatorcontrib><title>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><description>Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Capillary Permeability</subject><subject>Casein</subject><subject>Casein Kinase II - genetics</subject><subject>Casein Kinase II - metabolism</subject><subject>Cells, Cultured</subject><subject>Coronary Vessels - enzymology</subject><subject>Coronary Vessels - pathology</subject><subject>Coronary Vessels - physiopathology</subject><subject>Damage accumulation</subject><subject>Deactivation</subject><subject>Disease Models, Animal</subject><subject>Dynamins - metabolism</subject><subject>Endothelial Cells - enzymology</subject><subject>Endothelial Cells - pathology</subject><subject>Fission</subject><subject>Genetic Predisposition to Disease</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Inactivation</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microvasculature</subject><subject>Microvessels - enzymology</subject><subject>Microvessels - pathology</subject><subject>Microvessels - physiopathology</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - enzymology</subject><subject>Mitochondria, Heart - pathology</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitophagy</subject><subject>Myocardial Reperfusion Injury - enzymology</subject><subject>Myocardial Reperfusion Injury - genetics</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Protein Transport</subject><subject>Protein-serine/threonine kinase</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reperfusion</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Structure-function relationships</subject><subject>Translocation</subject><subject>Vasodilation</subject><issn>0300-8428</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNo1kEtOHDEQhq0IFCYkB2CDLLF2Un60216igSFReEgI1iO37e72aPqB3UaaSyFxEc5EJwyrqsVX319VCJ1Q-EkByl8JgOuCAFUEpGKEfkELKnhBqAJ-gBbAAYgSTB2hbyltAKiQkn5FR0yXQhRaLNDL7b04p9g0TTTPZvIJT63H1kQXjMVdsHF4NsnmrYk4JNv6Lhgc_ehjnVMYehz6TY67eSoOuWlxyuMYfUqhb_Dq8fZiSUnnZ9fk3WybhrE1zQ6b3uExDt0w_eNu6ppE_5RD3EO2HXoXg9niOqT_KdUOL_-yt9fv6LA22-R_7OsxelxdPix_k-u7qz_L82syMq4nUoCrnWICKmkot1x4pUtvpaKVsp5Zyp2ae1pqX5QFVVZr53hdaZCuEDXwY3T24Z23fMo-TevNkGM_R64ZcCklK0s5U6d7Klfzlesxhs7E3frzvfwdpBSA4w</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhou, Hao</creator><creator>Wang, Jin</creator><creator>Zhu, Pingjun</creator><creator>Zhu, Hong</creator><creator>Toan, Sam</creator><creator>Hu, Shunying</creator><creator>Ren, Jun</creator><creator>Chen, Yundai</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></search><sort><creationdate>20180701</creationdate><title>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</title><author>Zhou, Hao ; Wang, Jin ; Zhu, Pingjun ; Zhu, Hong ; Toan, Sam ; Hu, Shunying ; Ren, Jun ; Chen, Yundai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-50dfd8240b6a13c34e897ec681b8ce2c13d881b179e57518c99dd3fb906d54f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Capillary Permeability</topic><topic>Casein</topic><topic>Casein Kinase II - genetics</topic><topic>Casein Kinase II - metabolism</topic><topic>Cells, Cultured</topic><topic>Coronary Vessels - enzymology</topic><topic>Coronary Vessels - pathology</topic><topic>Coronary Vessels - physiopathology</topic><topic>Damage accumulation</topic><topic>Deactivation</topic><topic>Disease Models, Animal</topic><topic>Dynamins - metabolism</topic><topic>Endothelial Cells - enzymology</topic><topic>Endothelial Cells - pathology</topic><topic>Fission</topic><topic>Genetic Predisposition to Disease</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Inactivation</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microvasculature</topic><topic>Microvessels - enzymology</topic><topic>Microvessels - pathology</topic><topic>Microvessels - physiopathology</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - enzymology</topic><topic>Mitochondria, Heart - pathology</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitophagy</topic><topic>Myocardial Reperfusion Injury - enzymology</topic><topic>Myocardial Reperfusion Injury - genetics</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Protein Transport</topic><topic>Protein-serine/threonine kinase</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reperfusion</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Structure-function relationships</topic><topic>Translocation</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhu, Pingjun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><creatorcontrib>Chen, Yundai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hao</au><au>Wang, Jin</au><au>Zhu, Pingjun</au><au>Zhu, Hong</au><au>Toan, Sam</au><au>Hu, Shunying</au><au>Ren, Jun</au><au>Chen, Yundai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</atitle><jtitle>Basic research in cardiology</jtitle><addtitle>Basic Res Cardiol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>113</volume><issue>4</issue><spage>23</spage><epage>20</epage><pages>23-20</pages><issn>0300-8428</issn><eissn>1435-1803</eissn><abstract>Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>29744594</pmid><doi>10.1007/s00395-018-0682-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-8428 |
ispartof | Basic research in cardiology, 2018-07, Vol.113 (4), p.23-20 |
issn | 0300-8428 1435-1803 |
language | eng |
recordid | cdi_proquest_journals_2036662776 |
source | MEDLINE; SpringerLink (Online service) |
subjects | Animals Apoptosis Capillary Permeability Casein Casein Kinase II - genetics Casein Kinase II - metabolism Cells, Cultured Coronary Vessels - enzymology Coronary Vessels - pathology Coronary Vessels - physiopathology Damage accumulation Deactivation Disease Models, Animal Dynamins - metabolism Endothelial Cells - enzymology Endothelial Cells - pathology Fission Genetic Predisposition to Disease Heart Heart diseases Homeostasis Inactivation Injuries Ischemia Male Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Knockout Microvasculature Microvessels - enzymology Microvessels - pathology Microvessels - physiopathology Mitochondria Mitochondria, Heart - enzymology Mitochondria, Heart - pathology Mitochondrial Dynamics Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Mitophagy Myocardial Reperfusion Injury - enzymology Myocardial Reperfusion Injury - genetics Myocardial Reperfusion Injury - pathology Myocardial Reperfusion Injury - physiopathology Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism Pathogenesis Phosphorylation Protein Transport Protein-serine/threonine kinase Regulatory mechanisms (biology) Reperfusion Rodents Signal Transduction Structure-function relationships Translocation Vasodilation |
title | NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NR4A1%20aggravates%20the%20cardiac%20microvascular%20ischemia%20reperfusion%20injury%20through%20suppressing%20FUNDC1-mediated%20mitophagy%20and%20promoting%20Mff-required%20mitochondrial%20fission%20by%20CK2%CE%B1&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Zhou,%20Hao&rft.date=2018-07-01&rft.volume=113&rft.issue=4&rft.spage=23&rft.epage=20&rft.pages=23-20&rft.issn=0300-8428&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-018-0682-1&rft_dat=%3Cproquest_pubme%3E2036662776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036662776&rft_id=info:pmid/29744594&rfr_iscdi=true |