NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α

Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic research in cardiology 2018-07, Vol.113 (4), p.23-20
Hauptverfasser: Zhou, Hao, Wang, Jin, Zhu, Pingjun, Zhu, Hong, Toan, Sam, Hu, Shunying, Ren, Jun, Chen, Yundai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 4
container_start_page 23
container_title Basic research in cardiology
container_volume 113
creator Zhou, Hao
Wang, Jin
Zhu, Pingjun
Zhu, Hong
Toan, Sam
Hu, Shunying
Ren, Jun
Chen, Yundai
description Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.
doi_str_mv 10.1007/s00395-018-0682-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2036662776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036662776</sourcerecordid><originalsourceid>FETCH-LOGICAL-p239t-50dfd8240b6a13c34e897ec681b8ce2c13d881b179e57518c99dd3fb906d54f03</originalsourceid><addsrcrecordid>eNo1kEtOHDEQhq0IFCYkB2CDLLF2Un60216igSFReEgI1iO37e72aPqB3UaaSyFxEc5EJwyrqsVX319VCJ1Q-EkByl8JgOuCAFUEpGKEfkELKnhBqAJ-gBbAAYgSTB2hbyltAKiQkn5FR0yXQhRaLNDL7b04p9g0TTTPZvIJT63H1kQXjMVdsHF4NsnmrYk4JNv6Lhgc_ehjnVMYehz6TY67eSoOuWlxyuMYfUqhb_Dq8fZiSUnnZ9fk3WybhrE1zQ6b3uExDt0w_eNu6ppE_5RD3EO2HXoXg9niOqT_KdUOL_-yt9fv6LA22-R_7OsxelxdPix_k-u7qz_L82syMq4nUoCrnWICKmkot1x4pUtvpaKVsp5Zyp2ae1pqX5QFVVZr53hdaZCuEDXwY3T24Z23fMo-TevNkGM_R64ZcCklK0s5U6d7Klfzlesxhs7E3frzvfwdpBSA4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036662776</pqid></control><display><type>article</type><title>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Zhou, Hao ; Wang, Jin ; Zhu, Pingjun ; Zhu, Hong ; Toan, Sam ; Hu, Shunying ; Ren, Jun ; Chen, Yundai</creator><creatorcontrib>Zhou, Hao ; Wang, Jin ; Zhu, Pingjun ; Zhu, Hong ; Toan, Sam ; Hu, Shunying ; Ren, Jun ; Chen, Yundai</creatorcontrib><description>Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.</description><identifier>ISSN: 0300-8428</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-018-0682-1</identifier><identifier>PMID: 29744594</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Animals ; Apoptosis ; Capillary Permeability ; Casein ; Casein Kinase II - genetics ; Casein Kinase II - metabolism ; Cells, Cultured ; Coronary Vessels - enzymology ; Coronary Vessels - pathology ; Coronary Vessels - physiopathology ; Damage accumulation ; Deactivation ; Disease Models, Animal ; Dynamins - metabolism ; Endothelial Cells - enzymology ; Endothelial Cells - pathology ; Fission ; Genetic Predisposition to Disease ; Heart ; Heart diseases ; Homeostasis ; Inactivation ; Injuries ; Ischemia ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Microvasculature ; Microvessels - enzymology ; Microvessels - pathology ; Microvessels - physiopathology ; Mitochondria ; Mitochondria, Heart - enzymology ; Mitochondria, Heart - pathology ; Mitochondrial Dynamics ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitophagy ; Myocardial Reperfusion Injury - enzymology ; Myocardial Reperfusion Injury - genetics ; Myocardial Reperfusion Injury - pathology ; Myocardial Reperfusion Injury - physiopathology ; Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency ; Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics ; Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism ; Pathogenesis ; Phosphorylation ; Protein Transport ; Protein-serine/threonine kinase ; Regulatory mechanisms (biology) ; Reperfusion ; Rodents ; Signal Transduction ; Structure-function relationships ; Translocation ; Vasodilation</subject><ispartof>Basic research in cardiology, 2018-07, Vol.113 (4), p.23-20</ispartof><rights>Basic Research in Cardiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8138-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29744594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhu, Pingjun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><creatorcontrib>Chen, Yundai</creatorcontrib><title>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><description>Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Capillary Permeability</subject><subject>Casein</subject><subject>Casein Kinase II - genetics</subject><subject>Casein Kinase II - metabolism</subject><subject>Cells, Cultured</subject><subject>Coronary Vessels - enzymology</subject><subject>Coronary Vessels - pathology</subject><subject>Coronary Vessels - physiopathology</subject><subject>Damage accumulation</subject><subject>Deactivation</subject><subject>Disease Models, Animal</subject><subject>Dynamins - metabolism</subject><subject>Endothelial Cells - enzymology</subject><subject>Endothelial Cells - pathology</subject><subject>Fission</subject><subject>Genetic Predisposition to Disease</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Inactivation</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microvasculature</subject><subject>Microvessels - enzymology</subject><subject>Microvessels - pathology</subject><subject>Microvessels - physiopathology</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - enzymology</subject><subject>Mitochondria, Heart - pathology</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitophagy</subject><subject>Myocardial Reperfusion Injury - enzymology</subject><subject>Myocardial Reperfusion Injury - genetics</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics</subject><subject>Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Protein Transport</subject><subject>Protein-serine/threonine kinase</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reperfusion</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Structure-function relationships</subject><subject>Translocation</subject><subject>Vasodilation</subject><issn>0300-8428</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNo1kEtOHDEQhq0IFCYkB2CDLLF2Un60216igSFReEgI1iO37e72aPqB3UaaSyFxEc5EJwyrqsVX319VCJ1Q-EkByl8JgOuCAFUEpGKEfkELKnhBqAJ-gBbAAYgSTB2hbyltAKiQkn5FR0yXQhRaLNDL7b04p9g0TTTPZvIJT63H1kQXjMVdsHF4NsnmrYk4JNv6Lhgc_ehjnVMYehz6TY67eSoOuWlxyuMYfUqhb_Dq8fZiSUnnZ9fk3WybhrE1zQ6b3uExDt0w_eNu6ppE_5RD3EO2HXoXg9niOqT_KdUOL_-yt9fv6LA22-R_7OsxelxdPix_k-u7qz_L82syMq4nUoCrnWICKmkot1x4pUtvpaKVsp5Zyp2ae1pqX5QFVVZr53hdaZCuEDXwY3T24Z23fMo-TevNkGM_R64ZcCklK0s5U6d7Klfzlesxhs7E3frzvfwdpBSA4w</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhou, Hao</creator><creator>Wang, Jin</creator><creator>Zhu, Pingjun</creator><creator>Zhu, Hong</creator><creator>Toan, Sam</creator><creator>Hu, Shunying</creator><creator>Ren, Jun</creator><creator>Chen, Yundai</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></search><sort><creationdate>20180701</creationdate><title>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</title><author>Zhou, Hao ; Wang, Jin ; Zhu, Pingjun ; Zhu, Hong ; Toan, Sam ; Hu, Shunying ; Ren, Jun ; Chen, Yundai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p239t-50dfd8240b6a13c34e897ec681b8ce2c13d881b179e57518c99dd3fb906d54f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Capillary Permeability</topic><topic>Casein</topic><topic>Casein Kinase II - genetics</topic><topic>Casein Kinase II - metabolism</topic><topic>Cells, Cultured</topic><topic>Coronary Vessels - enzymology</topic><topic>Coronary Vessels - pathology</topic><topic>Coronary Vessels - physiopathology</topic><topic>Damage accumulation</topic><topic>Deactivation</topic><topic>Disease Models, Animal</topic><topic>Dynamins - metabolism</topic><topic>Endothelial Cells - enzymology</topic><topic>Endothelial Cells - pathology</topic><topic>Fission</topic><topic>Genetic Predisposition to Disease</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Inactivation</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microvasculature</topic><topic>Microvessels - enzymology</topic><topic>Microvessels - pathology</topic><topic>Microvessels - physiopathology</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - enzymology</topic><topic>Mitochondria, Heart - pathology</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitophagy</topic><topic>Myocardial Reperfusion Injury - enzymology</topic><topic>Myocardial Reperfusion Injury - genetics</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics</topic><topic>Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Protein Transport</topic><topic>Protein-serine/threonine kinase</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reperfusion</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Structure-function relationships</topic><topic>Translocation</topic><topic>Vasodilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Zhu, Pingjun</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Toan, Sam</creatorcontrib><creatorcontrib>Hu, Shunying</creatorcontrib><creatorcontrib>Ren, Jun</creatorcontrib><creatorcontrib>Chen, Yundai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hao</au><au>Wang, Jin</au><au>Zhu, Pingjun</au><au>Zhu, Hong</au><au>Toan, Sam</au><au>Hu, Shunying</au><au>Ren, Jun</au><au>Chen, Yundai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α</atitle><jtitle>Basic research in cardiology</jtitle><addtitle>Basic Res Cardiol</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>113</volume><issue>4</issue><spage>23</spage><epage>20</epage><pages>23-20</pages><issn>0300-8428</issn><eissn>1435-1803</eissn><abstract>Mitochondrial fission and mitophagy are considered key processes involved in the pathogenesis of cardiac microvascular ischemia reperfusion (IR) injury although the upstream regulatory mechanism for fission and mitophagy still remains unclear. Herein, we reported that NR4A1 was significantly upregulated following cardiac microvascular IR injury, and its level was positively correlated with microvascular collapse, endothelial cellular apoptosis and mitochondrial damage. However, NR4A1-knockout mice exhibited resistance against the acute microvascular injury and mitochondrial dysfunction compared with the wild-type mice. Functional studies illustrated that IR injury increased NR4A1 expression, which activated serine/threonine kinase casein kinase2 α (CK2α). CK2α promoted phosphorylation of mitochondrial fission factor (Mff) and FUN14 domain-containing 1 (FUNDC1). Phosphorylated activation of Mff enhanced the cytoplasmic translocation of Drp1 to the mitochondria, leading to fatal mitochondrial fission. Excessive fission disrupted mitochondrial function and structure, ultimately triggering mitochondrial apoptosis. In addition, phosphorylated inactivation of FUNDC1 failed to launch the protective mitophagy process, resulting in the accumulation of damaged mitochondria and endothelial apoptosis. By facilitating Mff-mediated mitochondrial fission and FUNDC1-required mitophagy, NR4A1 disturbed mitochondrial homeostasis, enhanced endothelial apoptosis and provoked microvascular dysfunction. In summary, our data illustrated that NR4A1 serves as a novel culprit factor in cardiac microvascular IR injury that operates through synchronous elevation of fission and suppression of mitophagy. Novel therapeutic strategies targeting the balance among NR4A1, fission and mitophagy might provide survival advantage to microvasculature following IR stress.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>29744594</pmid><doi>10.1007/s00395-018-0682-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8138-7275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0300-8428
ispartof Basic research in cardiology, 2018-07, Vol.113 (4), p.23-20
issn 0300-8428
1435-1803
language eng
recordid cdi_proquest_journals_2036662776
source MEDLINE; SpringerLink (Online service)
subjects Animals
Apoptosis
Capillary Permeability
Casein
Casein Kinase II - genetics
Casein Kinase II - metabolism
Cells, Cultured
Coronary Vessels - enzymology
Coronary Vessels - pathology
Coronary Vessels - physiopathology
Damage accumulation
Deactivation
Disease Models, Animal
Dynamins - metabolism
Endothelial Cells - enzymology
Endothelial Cells - pathology
Fission
Genetic Predisposition to Disease
Heart
Heart diseases
Homeostasis
Inactivation
Injuries
Ischemia
Male
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Knockout
Microvasculature
Microvessels - enzymology
Microvessels - pathology
Microvessels - physiopathology
Mitochondria
Mitochondria, Heart - enzymology
Mitochondria, Heart - pathology
Mitochondrial Dynamics
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitophagy
Myocardial Reperfusion Injury - enzymology
Myocardial Reperfusion Injury - genetics
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - physiopathology
Nuclear Receptor Subfamily 4, Group A, Member 1 - deficiency
Nuclear Receptor Subfamily 4, Group A, Member 1 - genetics
Nuclear Receptor Subfamily 4, Group A, Member 1 - metabolism
Pathogenesis
Phosphorylation
Protein Transport
Protein-serine/threonine kinase
Regulatory mechanisms (biology)
Reperfusion
Rodents
Signal Transduction
Structure-function relationships
Translocation
Vasodilation
title NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NR4A1%20aggravates%20the%20cardiac%20microvascular%20ischemia%20reperfusion%20injury%20through%20suppressing%20FUNDC1-mediated%20mitophagy%20and%20promoting%20Mff-required%20mitochondrial%20fission%20by%20CK2%CE%B1&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Zhou,%20Hao&rft.date=2018-07-01&rft.volume=113&rft.issue=4&rft.spage=23&rft.epage=20&rft.pages=23-20&rft.issn=0300-8428&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-018-0682-1&rft_dat=%3Cproquest_pubme%3E2036662776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036662776&rft_id=info:pmid/29744594&rfr_iscdi=true