How to model intraindividual change in cohort data using Mplus’ multi-group approach
The present article aims to show how to model longitudinal change in cohort sequential data applying latent true change models using Mplus’ multi-group approach. The underlying modeling ideas are described and explained in this article. As an example, change in internalizing problem behaviors betwee...
Gespeichert in:
Veröffentlicht in: | International journal of behavioral development 2018-05, Vol.42 (3), p.373-380 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | International journal of behavioral development |
container_volume | 42 |
creator | Gniewosz, Burkhard Gniewosz, Gabriela |
description | The present article aims to show how to model longitudinal change in cohort sequential data applying latent true change models using Mplus’ multi-group approach. The underlying modeling ideas are described and explained in this article. As an example, change in internalizing problem behaviors between the age of 8 and 13 years is modeled and predicted by gender. The example data stems from a large German cohort sequential study and comprises 806 children in three birth cohorts (2001, 2000, 1999). Finally, the advantages and disadvantages of this modelling approach are discussed. Annotated syntax is provided online for the models. |
doi_str_mv | 10.1177/0165025417750282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036662752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1178934</ericid><sage_id>10.1177_0165025417750282</sage_id><sourcerecordid>2036662752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-29536930b6c3c648ec4e1cb182cc79c221719c28d321a8de8d92d2eae06470c83</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrd69CAHPq_naJHuUUlul4kW9LmmSblO2mzXZVbz5N_x7_hJTVhQE32Ueb-bNwABwitEFxkJcIsxzRHKW9oSS7IERZpxliOd4H4x2dLbjD8FRjBuUhgo0Ak9z_wo7D7fe2Bq6pgvKNca9ONOrGuq1aiqbzlD7tQ8dNKpTsI-uqeBdW_fx8_0Dbvu6c1kVfN9C1bbBK70-BgcrVUd78o1j8Hg9fZjMs8X97GZytcg0pbjLSJFTXlC05JpqzqTVzGK9xJJoLQpNCBY4gTSUYCWNlaYghlhlEWcCaUnH4HzwTbHPvY1dufF9aFJkSRDlnBORk6RCg0oHH2Owq7INbqvCW4lRuWuv_NteejkbXmxw-kc-vU1qWVCW-Gzgo6rsb-i_fl_PnXhq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036662752</pqid></control><display><type>article</type><title>How to model intraindividual change in cohort data using Mplus’ multi-group approach</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>Gniewosz, Burkhard ; Gniewosz, Gabriela</creator><creatorcontrib>Gniewosz, Burkhard ; Gniewosz, Gabriela</creatorcontrib><description>The present article aims to show how to model longitudinal change in cohort sequential data applying latent true change models using Mplus’ multi-group approach. The underlying modeling ideas are described and explained in this article. As an example, change in internalizing problem behaviors between the age of 8 and 13 years is modeled and predicted by gender. The example data stems from a large German cohort sequential study and comprises 806 children in three birth cohorts (2001, 2000, 1999). Finally, the advantages and disadvantages of this modelling approach are discussed. Annotated syntax is provided online for the models.</description><identifier>ISSN: 0165-0254</identifier><identifier>EISSN: 1464-0651</identifier><identifier>DOI: 10.1177/0165025417750282</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Age Groups ; Behavior change ; Behavior Problems ; Child Behavior ; Childbirth & labor ; Children ; Cohort Analysis ; Data ; Data Collection ; Foreign Countries ; Gender Differences ; Internalization ; Longitudinal Studies ; Predictor Variables ; Questionnaires ; Screening Tests ; Structural Equation Models ; Student Surveys ; Syntax</subject><ispartof>International journal of behavioral development, 2018-05, Vol.42 (3), p.373-380</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-29536930b6c3c648ec4e1cb182cc79c221719c28d321a8de8d92d2eae06470c83</citedby><cites>FETCH-LOGICAL-c331t-29536930b6c3c648ec4e1cb182cc79c221719c28d321a8de8d92d2eae06470c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0165025417750282$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0165025417750282$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,30976,43597,43598</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1178934$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Gniewosz, Burkhard</creatorcontrib><creatorcontrib>Gniewosz, Gabriela</creatorcontrib><title>How to model intraindividual change in cohort data using Mplus’ multi-group approach</title><title>International journal of behavioral development</title><description>The present article aims to show how to model longitudinal change in cohort sequential data applying latent true change models using Mplus’ multi-group approach. The underlying modeling ideas are described and explained in this article. As an example, change in internalizing problem behaviors between the age of 8 and 13 years is modeled and predicted by gender. The example data stems from a large German cohort sequential study and comprises 806 children in three birth cohorts (2001, 2000, 1999). Finally, the advantages and disadvantages of this modelling approach are discussed. Annotated syntax is provided online for the models.</description><subject>Age Groups</subject><subject>Behavior change</subject><subject>Behavior Problems</subject><subject>Child Behavior</subject><subject>Childbirth & labor</subject><subject>Children</subject><subject>Cohort Analysis</subject><subject>Data</subject><subject>Data Collection</subject><subject>Foreign Countries</subject><subject>Gender Differences</subject><subject>Internalization</subject><subject>Longitudinal Studies</subject><subject>Predictor Variables</subject><subject>Questionnaires</subject><subject>Screening Tests</subject><subject>Structural Equation Models</subject><subject>Student Surveys</subject><subject>Syntax</subject><issn>0165-0254</issn><issn>1464-0651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1UE1LAzEUDKJgrd69CAHPq_naJHuUUlul4kW9LmmSblO2mzXZVbz5N_x7_hJTVhQE32Ueb-bNwABwitEFxkJcIsxzRHKW9oSS7IERZpxliOd4H4x2dLbjD8FRjBuUhgo0Ak9z_wo7D7fe2Bq6pgvKNca9ONOrGuq1aiqbzlD7tQ8dNKpTsI-uqeBdW_fx8_0Dbvu6c1kVfN9C1bbBK70-BgcrVUd78o1j8Hg9fZjMs8X97GZytcg0pbjLSJFTXlC05JpqzqTVzGK9xJJoLQpNCBY4gTSUYCWNlaYghlhlEWcCaUnH4HzwTbHPvY1dufF9aFJkSRDlnBORk6RCg0oHH2Owq7INbqvCW4lRuWuv_NteejkbXmxw-kc-vU1qWVCW-Gzgo6rsb-i_fl_PnXhq</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Gniewosz, Burkhard</creator><creator>Gniewosz, Gabriela</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope></search><sort><creationdate>201805</creationdate><title>How to model intraindividual change in cohort data using Mplus’ multi-group approach</title><author>Gniewosz, Burkhard ; Gniewosz, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-29536930b6c3c648ec4e1cb182cc79c221719c28d321a8de8d92d2eae06470c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age Groups</topic><topic>Behavior change</topic><topic>Behavior Problems</topic><topic>Child Behavior</topic><topic>Childbirth & labor</topic><topic>Children</topic><topic>Cohort Analysis</topic><topic>Data</topic><topic>Data Collection</topic><topic>Foreign Countries</topic><topic>Gender Differences</topic><topic>Internalization</topic><topic>Longitudinal Studies</topic><topic>Predictor Variables</topic><topic>Questionnaires</topic><topic>Screening Tests</topic><topic>Structural Equation Models</topic><topic>Student Surveys</topic><topic>Syntax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gniewosz, Burkhard</creatorcontrib><creatorcontrib>Gniewosz, Gabriela</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><jtitle>International journal of behavioral development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gniewosz, Burkhard</au><au>Gniewosz, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1178934</ericid><atitle>How to model intraindividual change in cohort data using Mplus’ multi-group approach</atitle><jtitle>International journal of behavioral development</jtitle><date>2018-05</date><risdate>2018</risdate><volume>42</volume><issue>3</issue><spage>373</spage><epage>380</epage><pages>373-380</pages><issn>0165-0254</issn><eissn>1464-0651</eissn><abstract>The present article aims to show how to model longitudinal change in cohort sequential data applying latent true change models using Mplus’ multi-group approach. The underlying modeling ideas are described and explained in this article. As an example, change in internalizing problem behaviors between the age of 8 and 13 years is modeled and predicted by gender. The example data stems from a large German cohort sequential study and comprises 806 children in three birth cohorts (2001, 2000, 1999). Finally, the advantages and disadvantages of this modelling approach are discussed. Annotated syntax is provided online for the models.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0165025417750282</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0254 |
ispartof | International journal of behavioral development, 2018-05, Vol.42 (3), p.373-380 |
issn | 0165-0254 1464-0651 |
language | eng |
recordid | cdi_proquest_journals_2036662752 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List |
subjects | Age Groups Behavior change Behavior Problems Child Behavior Childbirth & labor Children Cohort Analysis Data Data Collection Foreign Countries Gender Differences Internalization Longitudinal Studies Predictor Variables Questionnaires Screening Tests Structural Equation Models Student Surveys Syntax |
title | How to model intraindividual change in cohort data using Mplus’ multi-group approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20model%20intraindividual%20change%20in%20cohort%20data%20using%20Mplus%E2%80%99%20multi-group%20approach&rft.jtitle=International%20journal%20of%20behavioral%20development&rft.au=Gniewosz,%20Burkhard&rft.date=2018-05&rft.volume=42&rft.issue=3&rft.spage=373&rft.epage=380&rft.pages=373-380&rft.issn=0165-0254&rft.eissn=1464-0651&rft_id=info:doi/10.1177/0165025417750282&rft_dat=%3Cproquest_cross%3E2036662752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036662752&rft_id=info:pmid/&rft_ericid=EJ1178934&rft_sage_id=10.1177_0165025417750282&rfr_iscdi=true |