Efficient probabilistic grammar induction for design

The use of grammars in design and analysis has been set back by the lack of automated ways to induce them from arbitrarily structured datasets. Machine translation methods provide a construct for inducing grammars from coded data which have been extended to be used for design through pre-coded desig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AI EDAM 2018-05, Vol.32 (2), p.177-188
Hauptverfasser: Whiting, Mark E., Cagan, Jonathan, LeDuc, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of grammars in design and analysis has been set back by the lack of automated ways to induce them from arbitrarily structured datasets. Machine translation methods provide a construct for inducing grammars from coded data which have been extended to be used for design through pre-coded design data. This work introduces a four-step process for inducing grammars from un-coded structured datasets which can constitute a wide variety of data types, including many used in the design. The method includes: (1) extracting objects from the data, (2) forming structures from objects, (3) expanding structures into rules based on frequency, and (4) finding rule similarities that lead to consolidation or abstraction. To evaluate this method, grammars are induced from generated data, architectural layouts and three-dimensional design models to demonstrate that this method offers usable grammars automatically which are functionally similar to grammars produced by hand.
ISSN:0890-0604
1469-1760
DOI:10.1017/S0890060417000464