A Nickel‐Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane

The critical problem facing Ni‐based catalysts for the CO2 reforming of methane (DRM) is the serious carbon deposition and metal sintering, which are sensitive to the size of Ni particles. A perovskite‐type catalyst La0.46Sr0.34Ti0.9Ni0.1O3 (denoted as LSTN0.1) with a bimodal size distribution of Ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2018-05, Vol.10 (9), p.2078-2086
Hauptverfasser: Chai, Yingjie, Fu, Yu, Feng, He, Kong, Wenbo, Yuan, Changkun, Pan, Bingrong, Zhang, Jun, Sun, Yuhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2086
container_issue 9
container_start_page 2078
container_title ChemCatChem
container_volume 10
creator Chai, Yingjie
Fu, Yu
Feng, He
Kong, Wenbo
Yuan, Changkun
Pan, Bingrong
Zhang, Jun
Sun, Yuhan
description The critical problem facing Ni‐based catalysts for the CO2 reforming of methane (DRM) is the serious carbon deposition and metal sintering, which are sensitive to the size of Ni particles. A perovskite‐type catalyst La0.46Sr0.34Ti0.9Ni0.1O3 (denoted as LSTN0.1) with a bimodal size distribution of Ni particles was prepared by combustion method. Under mild DRM conditions (CH4:CO2=1:1.2 at 700 °C), no coke was found on LSTN0.1 after 100 h reaction, and the comparison with the impregnated catalysts showed that the carbon resistance is closely associated with the strong metal–support interaction and basicity. Nevertheless, under harsh reaction conditions (CH4:CO2=2:1 at 700 °C), the coking process speeded up on LSTN0.1. This bimodal Ni catalyst had higher coke resistance than the catalyst possessing few small particles. Moreover, the coke was found on the large Ni particles (14.5 nm average size) but the small Ni particles (2.5 nm average size) remained unchanged. The perovskite‐type catalyst LSTN0.1 with a bimodal size distribution of Ni particles showed excellent resistance to carbon deposition, which is due to the strong metal–support interaction and basicity. The faster reaction rate and the higher coke resistance of the small Ni particles means that the amount of deposited carbon is less than that for large Ni particles only.
doi_str_mv 10.1002/cctc.201701483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036310551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036310551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-99fd6d4afdc8f4cde1c1c5158be786591f5925e4e82435cff6c3aa9119848333</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTrHjOLHHNuVPKlBB98h1rqnbNCm22ypMPALPyJOQqhWMTPcM3zlX-oLgkuAewTi6VsqrXoRJiknM6VHQITxJQ8qFOP7NHJ8GZ87NMU4ETVkn2PTRk1ELKL8_vwbSQYHGYOuNWxgPKJNelo3zaGv8DEk0MMu6kCV6NR-AhsZ5a6Zrb-oK1fowg8bSeqNKcEjXFg1tg16gTUtTve2oR_AzWcF5cKJl6eDicLvB5PZmkt2Ho-e7h6w_ChUlKQ2F0EVSxFIXiutYFUAUUYwwPoWUJ0wQzUTEIAYexZQprRNFpRSECN4qoLQbXO1nV7Z-X4Pz-bxe26r9mEeYJpRgxkhL9faUsrVzFnS-smYpbZMTnO_U5ju1-a_atiD2ha0pofmHzrNskv11fwCPWn7W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036310551</pqid></control><display><type>article</type><title>A Nickel‐Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane</title><source>Access via Wiley Online Library</source><creator>Chai, Yingjie ; Fu, Yu ; Feng, He ; Kong, Wenbo ; Yuan, Changkun ; Pan, Bingrong ; Zhang, Jun ; Sun, Yuhan</creator><creatorcontrib>Chai, Yingjie ; Fu, Yu ; Feng, He ; Kong, Wenbo ; Yuan, Changkun ; Pan, Bingrong ; Zhang, Jun ; Sun, Yuhan</creatorcontrib><description>The critical problem facing Ni‐based catalysts for the CO2 reforming of methane (DRM) is the serious carbon deposition and metal sintering, which are sensitive to the size of Ni particles. A perovskite‐type catalyst La0.46Sr0.34Ti0.9Ni0.1O3 (denoted as LSTN0.1) with a bimodal size distribution of Ni particles was prepared by combustion method. Under mild DRM conditions (CH4:CO2=1:1.2 at 700 °C), no coke was found on LSTN0.1 after 100 h reaction, and the comparison with the impregnated catalysts showed that the carbon resistance is closely associated with the strong metal–support interaction and basicity. Nevertheless, under harsh reaction conditions (CH4:CO2=2:1 at 700 °C), the coking process speeded up on LSTN0.1. This bimodal Ni catalyst had higher coke resistance than the catalyst possessing few small particles. Moreover, the coke was found on the large Ni particles (14.5 nm average size) but the small Ni particles (2.5 nm average size) remained unchanged. The perovskite‐type catalyst LSTN0.1 with a bimodal size distribution of Ni particles showed excellent resistance to carbon deposition, which is due to the strong metal–support interaction and basicity. The faster reaction rate and the higher coke resistance of the small Ni particles means that the amount of deposited carbon is less than that for large Ni particles only.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201701483</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Basicity ; Carbon dioxide ; Catalysis ; Catalysts ; Coke ; Coking ; dry reforming ; heterogeneous catalysis ; Methane ; Nickel ; Particle size distribution ; perovskites ; Reforming</subject><ispartof>ChemCatChem, 2018-05, Vol.10 (9), p.2078-2086</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-99fd6d4afdc8f4cde1c1c5158be786591f5925e4e82435cff6c3aa9119848333</citedby><cites>FETCH-LOGICAL-c3173-99fd6d4afdc8f4cde1c1c5158be786591f5925e4e82435cff6c3aa9119848333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201701483$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201701483$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Chai, Yingjie</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Feng, He</creatorcontrib><creatorcontrib>Kong, Wenbo</creatorcontrib><creatorcontrib>Yuan, Changkun</creatorcontrib><creatorcontrib>Pan, Bingrong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Sun, Yuhan</creatorcontrib><title>A Nickel‐Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane</title><title>ChemCatChem</title><description>The critical problem facing Ni‐based catalysts for the CO2 reforming of methane (DRM) is the serious carbon deposition and metal sintering, which are sensitive to the size of Ni particles. A perovskite‐type catalyst La0.46Sr0.34Ti0.9Ni0.1O3 (denoted as LSTN0.1) with a bimodal size distribution of Ni particles was prepared by combustion method. Under mild DRM conditions (CH4:CO2=1:1.2 at 700 °C), no coke was found on LSTN0.1 after 100 h reaction, and the comparison with the impregnated catalysts showed that the carbon resistance is closely associated with the strong metal–support interaction and basicity. Nevertheless, under harsh reaction conditions (CH4:CO2=2:1 at 700 °C), the coking process speeded up on LSTN0.1. This bimodal Ni catalyst had higher coke resistance than the catalyst possessing few small particles. Moreover, the coke was found on the large Ni particles (14.5 nm average size) but the small Ni particles (2.5 nm average size) remained unchanged. The perovskite‐type catalyst LSTN0.1 with a bimodal size distribution of Ni particles showed excellent resistance to carbon deposition, which is due to the strong metal–support interaction and basicity. The faster reaction rate and the higher coke resistance of the small Ni particles means that the amount of deposited carbon is less than that for large Ni particles only.</description><subject>Basicity</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Coke</subject><subject>Coking</subject><subject>dry reforming</subject><subject>heterogeneous catalysis</subject><subject>Methane</subject><subject>Nickel</subject><subject>Particle size distribution</subject><subject>perovskites</subject><subject>Reforming</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltiTrHjOLHHNuVPKlBB98h1rqnbNCm22ypMPALPyJOQqhWMTPcM3zlX-oLgkuAewTi6VsqrXoRJiknM6VHQITxJQ8qFOP7NHJ8GZ87NMU4ETVkn2PTRk1ELKL8_vwbSQYHGYOuNWxgPKJNelo3zaGv8DEk0MMu6kCV6NR-AhsZ5a6Zrb-oK1fowg8bSeqNKcEjXFg1tg16gTUtTve2oR_AzWcF5cKJl6eDicLvB5PZmkt2Ho-e7h6w_ChUlKQ2F0EVSxFIXiutYFUAUUYwwPoWUJ0wQzUTEIAYexZQprRNFpRSECN4qoLQbXO1nV7Z-X4Pz-bxe26r9mEeYJpRgxkhL9faUsrVzFnS-smYpbZMTnO_U5ju1-a_atiD2ha0pofmHzrNskv11fwCPWn7W</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Chai, Yingjie</creator><creator>Fu, Yu</creator><creator>Feng, He</creator><creator>Kong, Wenbo</creator><creator>Yuan, Changkun</creator><creator>Pan, Bingrong</creator><creator>Zhang, Jun</creator><creator>Sun, Yuhan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180509</creationdate><title>A Nickel‐Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane</title><author>Chai, Yingjie ; Fu, Yu ; Feng, He ; Kong, Wenbo ; Yuan, Changkun ; Pan, Bingrong ; Zhang, Jun ; Sun, Yuhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-99fd6d4afdc8f4cde1c1c5158be786591f5925e4e82435cff6c3aa9119848333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basicity</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Coke</topic><topic>Coking</topic><topic>dry reforming</topic><topic>heterogeneous catalysis</topic><topic>Methane</topic><topic>Nickel</topic><topic>Particle size distribution</topic><topic>perovskites</topic><topic>Reforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Yingjie</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Feng, He</creatorcontrib><creatorcontrib>Kong, Wenbo</creatorcontrib><creatorcontrib>Yuan, Changkun</creatorcontrib><creatorcontrib>Pan, Bingrong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Sun, Yuhan</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Yingjie</au><au>Fu, Yu</au><au>Feng, He</au><au>Kong, Wenbo</au><au>Yuan, Changkun</au><au>Pan, Bingrong</au><au>Zhang, Jun</au><au>Sun, Yuhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nickel‐Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane</atitle><jtitle>ChemCatChem</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>10</volume><issue>9</issue><spage>2078</spage><epage>2086</epage><pages>2078-2086</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>The critical problem facing Ni‐based catalysts for the CO2 reforming of methane (DRM) is the serious carbon deposition and metal sintering, which are sensitive to the size of Ni particles. A perovskite‐type catalyst La0.46Sr0.34Ti0.9Ni0.1O3 (denoted as LSTN0.1) with a bimodal size distribution of Ni particles was prepared by combustion method. Under mild DRM conditions (CH4:CO2=1:1.2 at 700 °C), no coke was found on LSTN0.1 after 100 h reaction, and the comparison with the impregnated catalysts showed that the carbon resistance is closely associated with the strong metal–support interaction and basicity. Nevertheless, under harsh reaction conditions (CH4:CO2=2:1 at 700 °C), the coking process speeded up on LSTN0.1. This bimodal Ni catalyst had higher coke resistance than the catalyst possessing few small particles. Moreover, the coke was found on the large Ni particles (14.5 nm average size) but the small Ni particles (2.5 nm average size) remained unchanged. The perovskite‐type catalyst LSTN0.1 with a bimodal size distribution of Ni particles showed excellent resistance to carbon deposition, which is due to the strong metal–support interaction and basicity. The faster reaction rate and the higher coke resistance of the small Ni particles means that the amount of deposited carbon is less than that for large Ni particles only.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201701483</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2018-05, Vol.10 (9), p.2078-2086
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2036310551
source Access via Wiley Online Library
subjects Basicity
Carbon dioxide
Catalysis
Catalysts
Coke
Coking
dry reforming
heterogeneous catalysis
Methane
Nickel
Particle size distribution
perovskites
Reforming
title A Nickel‐Based Perovskite Catalyst with a Bimodal Size Distribution of Nickel Particles for Dry Reforming of Methane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nickel%E2%80%90Based%20Perovskite%20Catalyst%20with%20a%20Bimodal%20Size%20Distribution%20of%20Nickel%20Particles%20for%20Dry%20Reforming%20of%20Methane&rft.jtitle=ChemCatChem&rft.au=Chai,%20Yingjie&rft.date=2018-05-09&rft.volume=10&rft.issue=9&rft.spage=2078&rft.epage=2086&rft.pages=2078-2086&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201701483&rft_dat=%3Cproquest_cross%3E2036310551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036310551&rft_id=info:pmid/&rfr_iscdi=true