Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation
Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to t...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2018-05, Vol.215 (9), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 215 |
creator | Boturchuk, Ievgen Scheffler, Leopold Larsen, Arne Nylandsted Julsgaard, Brian |
description | Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration.
The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced. |
doi_str_mv | 10.1002/pssa.201700516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036310547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036310547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdcrYeThZVn0iVRSpZR05jg2ukjjYSVF2fALfyJeQqAiWbGZGo3vmai5CtwQmBIDe187xCQXCAEISnaERiSPqRT5Jzn9ngEt05dwBIAgDRkaoXBxN0TbaVNgovCikaKwWvCg6PBWNPko8l6pfOqwrXH19fK74I563VlcveC15g_e2r6Ws-qmrBxIrY_H2tdQCz0zVcNHgpbElHzyu0YXihZM3P32MnpeL_Wztbbarh9l04wmfsMhjVDGIBQ1IyDJIIIpAUT8PogSyOBEyUJRkuRJBHMc5Y4wS7oe5iDPOcyaDwB-ju9Pd2pq3VromPZjWVr1lSsHvI4H--141OamENc5ZqdLa6pLbLiWQDpGmQ6Tpb6Q9kJyAd13I7h91-rTbTf_Yb0fue5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036310547</pqid></control><display><type>article</type><title>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</title><source>Wiley Online Library All Journals</source><creator>Boturchuk, Ievgen ; Scheffler, Leopold ; Larsen, Arne Nylandsted ; Julsgaard, Brian</creator><creatorcontrib>Boturchuk, Ievgen ; Scheffler, Leopold ; Larsen, Arne Nylandsted ; Julsgaard, Brian</creatorcontrib><description>Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration.
The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201700516</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Contact resistance ; Deep level transient spectroscopy ; Defects ; Electric contacts ; electron traps ; Evolution ; GaN ; Heat treatment ; n‐type semiconductors ; ohmic contacts ; Pulse duration</subject><ispartof>Physica status solidi. A, Applications and materials science, 2018-05, Vol.215 (9), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</citedby><cites>FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</cites><orcidid>0000-0003-3616-6857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201700516$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201700516$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Boturchuk, Ievgen</creatorcontrib><creatorcontrib>Scheffler, Leopold</creatorcontrib><creatorcontrib>Larsen, Arne Nylandsted</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><title>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</title><title>Physica status solidi. A, Applications and materials science</title><description>Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration.
The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.</description><subject>Contact resistance</subject><subject>Deep level transient spectroscopy</subject><subject>Defects</subject><subject>Electric contacts</subject><subject>electron traps</subject><subject>Evolution</subject><subject>GaN</subject><subject>Heat treatment</subject><subject>n‐type semiconductors</subject><subject>ohmic contacts</subject><subject>Pulse duration</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdcrYeThZVn0iVRSpZR05jg2ukjjYSVF2fALfyJeQqAiWbGZGo3vmai5CtwQmBIDe187xCQXCAEISnaERiSPqRT5Jzn9ngEt05dwBIAgDRkaoXBxN0TbaVNgovCikaKwWvCg6PBWNPko8l6pfOqwrXH19fK74I563VlcveC15g_e2r6Ws-qmrBxIrY_H2tdQCz0zVcNHgpbElHzyu0YXihZM3P32MnpeL_Wztbbarh9l04wmfsMhjVDGIBQ1IyDJIIIpAUT8PogSyOBEyUJRkuRJBHMc5Y4wS7oe5iDPOcyaDwB-ju9Pd2pq3VromPZjWVr1lSsHvI4H--141OamENc5ZqdLa6pLbLiWQDpGmQ6Tpb6Q9kJyAd13I7h91-rTbTf_Yb0fue5U</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Boturchuk, Ievgen</creator><creator>Scheffler, Leopold</creator><creator>Larsen, Arne Nylandsted</creator><creator>Julsgaard, Brian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3616-6857</orcidid></search><sort><creationdate>20180509</creationdate><title>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</title><author>Boturchuk, Ievgen ; Scheffler, Leopold ; Larsen, Arne Nylandsted ; Julsgaard, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Contact resistance</topic><topic>Deep level transient spectroscopy</topic><topic>Defects</topic><topic>Electric contacts</topic><topic>electron traps</topic><topic>Evolution</topic><topic>GaN</topic><topic>Heat treatment</topic><topic>n‐type semiconductors</topic><topic>ohmic contacts</topic><topic>Pulse duration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boturchuk, Ievgen</creatorcontrib><creatorcontrib>Scheffler, Leopold</creatorcontrib><creatorcontrib>Larsen, Arne Nylandsted</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boturchuk, Ievgen</au><au>Scheffler, Leopold</au><au>Larsen, Arne Nylandsted</au><au>Julsgaard, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>215</volume><issue>9</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration.
The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201700516</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3616-6857</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2018-05, Vol.215 (9), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2036310547 |
source | Wiley Online Library All Journals |
subjects | Contact resistance Deep level transient spectroscopy Defects Electric contacts electron traps Evolution GaN Heat treatment n‐type semiconductors ohmic contacts Pulse duration |
title | Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Electrically%20Active%20Defects%20in%20n%E2%80%90GaN%20During%20Heat%20Treatment%20Typical%20for%20Ohmic%20Contact%20Formation&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Boturchuk,%20Ievgen&rft.date=2018-05-09&rft.volume=215&rft.issue=9&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201700516&rft_dat=%3Cproquest_cross%3E2036310547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036310547&rft_id=info:pmid/&rfr_iscdi=true |