Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation

Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2018-05, Vol.215 (9), p.n/a
Hauptverfasser: Boturchuk, Ievgen, Scheffler, Leopold, Larsen, Arne Nylandsted, Julsgaard, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 215
creator Boturchuk, Ievgen
Scheffler, Leopold
Larsen, Arne Nylandsted
Julsgaard, Brian
description Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration. The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.
doi_str_mv 10.1002/pssa.201700516
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2036310547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036310547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdcrYeThZVn0iVRSpZR05jg2ukjjYSVF2fALfyJeQqAiWbGZGo3vmai5CtwQmBIDe187xCQXCAEISnaERiSPqRT5Jzn9ngEt05dwBIAgDRkaoXBxN0TbaVNgovCikaKwWvCg6PBWNPko8l6pfOqwrXH19fK74I563VlcveC15g_e2r6Ws-qmrBxIrY_H2tdQCz0zVcNHgpbElHzyu0YXihZM3P32MnpeL_Wztbbarh9l04wmfsMhjVDGIBQ1IyDJIIIpAUT8PogSyOBEyUJRkuRJBHMc5Y4wS7oe5iDPOcyaDwB-ju9Pd2pq3VromPZjWVr1lSsHvI4H--141OamENc5ZqdLa6pLbLiWQDpGmQ6Tpb6Q9kJyAd13I7h91-rTbTf_Yb0fue5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036310547</pqid></control><display><type>article</type><title>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</title><source>Wiley Online Library All Journals</source><creator>Boturchuk, Ievgen ; Scheffler, Leopold ; Larsen, Arne Nylandsted ; Julsgaard, Brian</creator><creatorcontrib>Boturchuk, Ievgen ; Scheffler, Leopold ; Larsen, Arne Nylandsted ; Julsgaard, Brian</creatorcontrib><description>Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration. The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201700516</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Contact resistance ; Deep level transient spectroscopy ; Defects ; Electric contacts ; electron traps ; Evolution ; GaN ; Heat treatment ; n‐type semiconductors ; ohmic contacts ; Pulse duration</subject><ispartof>Physica status solidi. A, Applications and materials science, 2018-05, Vol.215 (9), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</citedby><cites>FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</cites><orcidid>0000-0003-3616-6857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201700516$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201700516$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Boturchuk, Ievgen</creatorcontrib><creatorcontrib>Scheffler, Leopold</creatorcontrib><creatorcontrib>Larsen, Arne Nylandsted</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><title>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</title><title>Physica status solidi. A, Applications and materials science</title><description>Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration. The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.</description><subject>Contact resistance</subject><subject>Deep level transient spectroscopy</subject><subject>Defects</subject><subject>Electric contacts</subject><subject>electron traps</subject><subject>Evolution</subject><subject>GaN</subject><subject>Heat treatment</subject><subject>n‐type semiconductors</subject><subject>ohmic contacts</subject><subject>Pulse duration</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdcrYeThZVn0iVRSpZR05jg2ukjjYSVF2fALfyJeQqAiWbGZGo3vmai5CtwQmBIDe187xCQXCAEISnaERiSPqRT5Jzn9ngEt05dwBIAgDRkaoXBxN0TbaVNgovCikaKwWvCg6PBWNPko8l6pfOqwrXH19fK74I563VlcveC15g_e2r6Ws-qmrBxIrY_H2tdQCz0zVcNHgpbElHzyu0YXihZM3P32MnpeL_Wztbbarh9l04wmfsMhjVDGIBQ1IyDJIIIpAUT8PogSyOBEyUJRkuRJBHMc5Y4wS7oe5iDPOcyaDwB-ju9Pd2pq3VromPZjWVr1lSsHvI4H--141OamENc5ZqdLa6pLbLiWQDpGmQ6Tpb6Q9kJyAd13I7h91-rTbTf_Yb0fue5U</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Boturchuk, Ievgen</creator><creator>Scheffler, Leopold</creator><creator>Larsen, Arne Nylandsted</creator><creator>Julsgaard, Brian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3616-6857</orcidid></search><sort><creationdate>20180509</creationdate><title>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</title><author>Boturchuk, Ievgen ; Scheffler, Leopold ; Larsen, Arne Nylandsted ; Julsgaard, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-72f708c24157b090660f23d4690b89ce4f21bdfc4888d77721a35dc8baad7e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Contact resistance</topic><topic>Deep level transient spectroscopy</topic><topic>Defects</topic><topic>Electric contacts</topic><topic>electron traps</topic><topic>Evolution</topic><topic>GaN</topic><topic>Heat treatment</topic><topic>n‐type semiconductors</topic><topic>ohmic contacts</topic><topic>Pulse duration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boturchuk, Ievgen</creatorcontrib><creatorcontrib>Scheffler, Leopold</creatorcontrib><creatorcontrib>Larsen, Arne Nylandsted</creatorcontrib><creatorcontrib>Julsgaard, Brian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boturchuk, Ievgen</au><au>Scheffler, Leopold</au><au>Larsen, Arne Nylandsted</au><au>Julsgaard, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>215</volume><issue>9</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Ohmic contact formation to n‐type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti‐based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n‐GaN: 300 °C (In‐based), 550 °C (Ta‐based), and 800 °C (Ti‐based). Properties and concentration of the defects are studied by the means of deep level transient spectroscopy (DLTS). Changes in carrier capture kinetics are monitored with varying filling pulse duration. The figure shows DLTS spectra of the samples treated at the different temperatures (300 oC, 550 oC, 800 oC). The heat treatment influences the properties and concentration of electrically active defects: E1 change in activation energy, E2/E3 steady increase in concentration upon annealing; E4 decreases while E5/E5 become pronounced.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201700516</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3616-6857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2018-05, Vol.215 (9), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2036310547
source Wiley Online Library All Journals
subjects Contact resistance
Deep level transient spectroscopy
Defects
Electric contacts
electron traps
Evolution
GaN
Heat treatment
n‐type semiconductors
ohmic contacts
Pulse duration
title Evolution of Electrically Active Defects in n‐GaN During Heat Treatment Typical for Ohmic Contact Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Electrically%20Active%20Defects%20in%20n%E2%80%90GaN%20During%20Heat%20Treatment%20Typical%20for%20Ohmic%20Contact%20Formation&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Boturchuk,%20Ievgen&rft.date=2018-05-09&rft.volume=215&rft.issue=9&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201700516&rft_dat=%3Cproquest_cross%3E2036310547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036310547&rft_id=info:pmid/&rfr_iscdi=true