Tree-Based Feature Transformation for Purchase Behavior Prediction
In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The per...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2018/05/01, Vol.E101.D(5), pp.1441-1444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1444 |
---|---|
container_issue | 5 |
container_start_page | 1441 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E101.D |
creator | HOU, Chunyan CHEN, Chen WANG, Jinsong |
description | In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance. |
doi_str_mv | 10.1587/transinf.2017EDL8210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2034914394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034914394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-c20865300c9631c499025b9e9ac9451730a0008e6a25d0c89f4a05c9c3d02bf53</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gYeA5-jMfiTZo_1SoaBIPS_bzcSmtEndTQT_vQm1tacZhud9Bx7GbhHuUWXpQ-NtFcqquOeA6XQyzzjCGRtgKlWMIsFzNgCNSZwpwS_ZVQhrAOwgNWCjhSeKRzZQHs3INq2naNHXFbXf2qasq6jborfWu1UHRSNa2e-yv3jKS9cD1-yisJtAN39zyD5m08X4OZ6_Pr2MH-exU0naxI5DligB4HQi0EmtgaulJm2dlgpTARYAMkosVzm4TBfSgnLaiRz4slBiyO72vTtff7UUGrOuW191Lw0HITVKoWVHyT3lfB2Cp8LsfLm1_scgmN6WOdgyJ7a62Ps-tg6N_aRjyPqmdBv6D00R0EyMOiwnJUe4U-UNVeIX8sx7dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034914394</pqid></control><display><type>article</type><title>Tree-Based Feature Transformation for Purchase Behavior Prediction</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HOU, Chunyan ; CHEN, Chen ; WANG, Jinsong</creator><creatorcontrib>HOU, Chunyan ; CHEN, Chen ; WANG, Jinsong</creatorcontrib><description>In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2017EDL8210</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Artificial intelligence ; Decision trees ; Engineering education ; feature transformation ; Leaves ; Machine learning ; purchase behavior prediction ; Transformations</subject><ispartof>IEICE Transactions on Information and Systems, 2018/05/01, Vol.E101.D(5), pp.1441-1444</ispartof><rights>2018 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-c20865300c9631c499025b9e9ac9451730a0008e6a25d0c89f4a05c9c3d02bf53</citedby><cites>FETCH-LOGICAL-c567t-c20865300c9631c499025b9e9ac9451730a0008e6a25d0c89f4a05c9c3d02bf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>HOU, Chunyan</creatorcontrib><creatorcontrib>CHEN, Chen</creatorcontrib><creatorcontrib>WANG, Jinsong</creatorcontrib><title>Tree-Based Feature Transformation for Purchase Behavior Prediction</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Decision trees</subject><subject>Engineering education</subject><subject>feature transformation</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>purchase behavior prediction</subject><subject>Transformations</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFb_gYeA5-jMfiTZo_1SoaBIPS_bzcSmtEndTQT_vQm1tacZhud9Bx7GbhHuUWXpQ-NtFcqquOeA6XQyzzjCGRtgKlWMIsFzNgCNSZwpwS_ZVQhrAOwgNWCjhSeKRzZQHs3INq2naNHXFbXf2qasq6jborfWu1UHRSNa2e-yv3jKS9cD1-yisJtAN39zyD5m08X4OZ6_Pr2MH-exU0naxI5DligB4HQi0EmtgaulJm2dlgpTARYAMkosVzm4TBfSgnLaiRz4slBiyO72vTtff7UUGrOuW191Lw0HITVKoWVHyT3lfB2Cp8LsfLm1_scgmN6WOdgyJ7a62Ps-tg6N_aRjyPqmdBv6D00R0EyMOiwnJUe4U-UNVeIX8sx7dA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>HOU, Chunyan</creator><creator>CHEN, Chen</creator><creator>WANG, Jinsong</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180501</creationdate><title>Tree-Based Feature Transformation for Purchase Behavior Prediction</title><author>HOU, Chunyan ; CHEN, Chen ; WANG, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-c20865300c9631c499025b9e9ac9451730a0008e6a25d0c89f4a05c9c3d02bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Decision trees</topic><topic>Engineering education</topic><topic>feature transformation</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>purchase behavior prediction</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOU, Chunyan</creatorcontrib><creatorcontrib>CHEN, Chen</creatorcontrib><creatorcontrib>WANG, Jinsong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOU, Chunyan</au><au>CHEN, Chen</au><au>WANG, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tree-Based Feature Transformation for Purchase Behavior Prediction</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>E101.D</volume><issue>5</issue><spage>1441</spage><epage>1444</epage><pages>1441-1444</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2017EDL8210</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2018/05/01, Vol.E101.D(5), pp.1441-1444 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2034914394 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Decision trees Engineering education feature transformation Leaves Machine learning purchase behavior prediction Transformations |
title | Tree-Based Feature Transformation for Purchase Behavior Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tree-Based%20Feature%20Transformation%20for%20Purchase%20Behavior%20Prediction&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=HOU,%20Chunyan&rft.date=2018-05-01&rft.volume=E101.D&rft.issue=5&rft.spage=1441&rft.epage=1444&rft.pages=1441-1444&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2017EDL8210&rft_dat=%3Cproquest_cross%3E2034914394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034914394&rft_id=info:pmid/&rfr_iscdi=true |