Photovoltaic array prediction on short-term output power method in Centralized power generation system

The photovoltaic array directly determines the output power system of the entire photovoltaic power generation system. In order to more accurately predict the output power of the photovoltaic power generation system and reduce the impact of photovoltaic power generation on the power system, this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2020-07, Vol.290 (1-2), p.243-263
Hauptverfasser: Li, Ling-Ling, Wen, Shi-Yu, Tseng, Ming-Lang, Chiu, Anthony S. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 1-2
container_start_page 243
container_title Annals of operations research
container_volume 290
creator Li, Ling-Ling
Wen, Shi-Yu
Tseng, Ming-Lang
Chiu, Anthony S. F.
description The photovoltaic array directly determines the output power system of the entire photovoltaic power generation system. In order to more accurately predict the output power of the photovoltaic power generation system and reduce the impact of photovoltaic power generation on the power system, this study proposes a prediction model based on an improved firefly algorithm optimized support vector machine. The model introduces the linear decreasing inertia weight and the adaptive variable step-size in the original firefly algorithm that effectively improves the convergence speed and optimization ability of the algorithm. The multiple meteorological factors influencing the photovoltaic power generation were studied. Calculate the correlation coefficient of each meteorological influencing factor between the forecasted date and historical date to determine the training sample. The training samples were used to train the prediction model. The photovoltaic array output power in the sunny, cloudy and rainy days was predicted for the three weather styles using the trained prediction model. The results were compared the prediction results on the standard firefly algorithm-based optimizing support vector machine and particle swarm algorithm-based optimizing support vector machines. The proposed method showed that the mean absolute percentage error of the three-weather style prediction result is reduced by 1.66 and 3.30% and the mean square error is reduced by 0.21 and 0.27 compared to other methods. This method is verified to predict the PV array output power more accurately.
doi_str_mv 10.1007/s10479-018-2879-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2034869464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627726320</galeid><sourcerecordid>A627726320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-e355f8095e8a37186e0b06501370d31b02ca00aa1dca03d1b7c329a4096a3d693</originalsourceid><addsrcrecordid>eNp1kV1LHDEUhoNUcLv1B3g34G3HniTzeSmL1YJgL9rrkM2cmY3sJNOcjDL--kZXUKElISckz3s-eBk743DBAepvxKGo2xx4k4smXZYjtuJlLfJWyuYTW4Eoi7yUEk7YZ6J7AOC8KVes_7nz0T_4fdTWZDoEvWRTwM6aaL3L0qadDzGPGMbMz3GaYzb5RwzZiHHnu8y6bIMuBr23T9i9_g3oMOiXDLRQxPELO-71nvD0Na7Z7-9XvzY3-e3d9Y_N5W1uCgExR1mWfQNtiY2WNW8qhC1UJXBZQyf5FoTRAFrzLkXZ8W1tpGh1AW2lZVe1cs3OD3mn4P_MSFHd-zm4VFIJkEVTtUVVvFGD3qOyrvepfzNaMuqyEnUtKpnoNbv4B5VWh6M13mFv0_sHwdd3gu1M1iGlg-ywizTomegjzg-4CZ4oYK-mYEcdFsVBPZuqDqaqZKp6NlUtSSMOGkqsGzC8zfd_0V80G6Sm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034869464</pqid></control><display><type>article</type><title>Photovoltaic array prediction on short-term output power method in Centralized power generation system</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Ling-Ling ; Wen, Shi-Yu ; Tseng, Ming-Lang ; Chiu, Anthony S. F.</creator><creatorcontrib>Li, Ling-Ling ; Wen, Shi-Yu ; Tseng, Ming-Lang ; Chiu, Anthony S. F.</creatorcontrib><description>The photovoltaic array directly determines the output power system of the entire photovoltaic power generation system. In order to more accurately predict the output power of the photovoltaic power generation system and reduce the impact of photovoltaic power generation on the power system, this study proposes a prediction model based on an improved firefly algorithm optimized support vector machine. The model introduces the linear decreasing inertia weight and the adaptive variable step-size in the original firefly algorithm that effectively improves the convergence speed and optimization ability of the algorithm. The multiple meteorological factors influencing the photovoltaic power generation were studied. Calculate the correlation coefficient of each meteorological influencing factor between the forecasted date and historical date to determine the training sample. The training samples were used to train the prediction model. The photovoltaic array output power in the sunny, cloudy and rainy days was predicted for the three weather styles using the trained prediction model. The results were compared the prediction results on the standard firefly algorithm-based optimizing support vector machine and particle swarm algorithm-based optimizing support vector machines. The proposed method showed that the mean absolute percentage error of the three-weather style prediction result is reduced by 1.66 and 3.30% and the mean square error is reduced by 0.21 and 0.27 compared to other methods. This method is verified to predict the PV array output power more accurately.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-018-2879-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrays ; Business and Management ; Combinatorics ; Correlation analysis ; Correlation coefficients ; Electric power generation ; Engineering models ; Heuristic methods ; Mathematical analysis ; Mathematical models ; Operations research ; Operations Research/Decision Theory ; Optimization ; Photovoltaic cells ; Photovoltaic power generation ; Prediction models ; S.i.: Some ; Solar cells ; Support vector machines ; Theory of Computation ; Training</subject><ispartof>Annals of operations research, 2020-07, Vol.290 (1-2), p.243-263</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-e355f8095e8a37186e0b06501370d31b02ca00aa1dca03d1b7c329a4096a3d693</citedby><cites>FETCH-LOGICAL-c420t-e355f8095e8a37186e0b06501370d31b02ca00aa1dca03d1b7c329a4096a3d693</cites><orcidid>0000-0002-2702-3590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-018-2879-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-018-2879-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Ling-Ling</creatorcontrib><creatorcontrib>Wen, Shi-Yu</creatorcontrib><creatorcontrib>Tseng, Ming-Lang</creatorcontrib><creatorcontrib>Chiu, Anthony S. F.</creatorcontrib><title>Photovoltaic array prediction on short-term output power method in Centralized power generation system</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>The photovoltaic array directly determines the output power system of the entire photovoltaic power generation system. In order to more accurately predict the output power of the photovoltaic power generation system and reduce the impact of photovoltaic power generation on the power system, this study proposes a prediction model based on an improved firefly algorithm optimized support vector machine. The model introduces the linear decreasing inertia weight and the adaptive variable step-size in the original firefly algorithm that effectively improves the convergence speed and optimization ability of the algorithm. The multiple meteorological factors influencing the photovoltaic power generation were studied. Calculate the correlation coefficient of each meteorological influencing factor between the forecasted date and historical date to determine the training sample. The training samples were used to train the prediction model. The photovoltaic array output power in the sunny, cloudy and rainy days was predicted for the three weather styles using the trained prediction model. The results were compared the prediction results on the standard firefly algorithm-based optimizing support vector machine and particle swarm algorithm-based optimizing support vector machines. The proposed method showed that the mean absolute percentage error of the three-weather style prediction result is reduced by 1.66 and 3.30% and the mean square error is reduced by 0.21 and 0.27 compared to other methods. This method is verified to predict the PV array output power more accurately.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Correlation analysis</subject><subject>Correlation coefficients</subject><subject>Electric power generation</subject><subject>Engineering models</subject><subject>Heuristic methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic power generation</subject><subject>Prediction models</subject><subject>S.i.: Some</subject><subject>Solar cells</subject><subject>Support vector machines</subject><subject>Theory of Computation</subject><subject>Training</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1LHDEUhoNUcLv1B3g34G3HniTzeSmL1YJgL9rrkM2cmY3sJNOcjDL--kZXUKElISckz3s-eBk743DBAepvxKGo2xx4k4smXZYjtuJlLfJWyuYTW4Eoi7yUEk7YZ6J7AOC8KVes_7nz0T_4fdTWZDoEvWRTwM6aaL3L0qadDzGPGMbMz3GaYzb5RwzZiHHnu8y6bIMuBr23T9i9_g3oMOiXDLRQxPELO-71nvD0Na7Z7-9XvzY3-e3d9Y_N5W1uCgExR1mWfQNtiY2WNW8qhC1UJXBZQyf5FoTRAFrzLkXZ8W1tpGh1AW2lZVe1cs3OD3mn4P_MSFHd-zm4VFIJkEVTtUVVvFGD3qOyrvepfzNaMuqyEnUtKpnoNbv4B5VWh6M13mFv0_sHwdd3gu1M1iGlg-ywizTomegjzg-4CZ4oYK-mYEcdFsVBPZuqDqaqZKp6NlUtSSMOGkqsGzC8zfd_0V80G6Sm</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Li, Ling-Ling</creator><creator>Wen, Shi-Yu</creator><creator>Tseng, Ming-Lang</creator><creator>Chiu, Anthony S. F.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2702-3590</orcidid></search><sort><creationdate>20200701</creationdate><title>Photovoltaic array prediction on short-term output power method in Centralized power generation system</title><author>Li, Ling-Ling ; Wen, Shi-Yu ; Tseng, Ming-Lang ; Chiu, Anthony S. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-e355f8095e8a37186e0b06501370d31b02ca00aa1dca03d1b7c329a4096a3d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Correlation analysis</topic><topic>Correlation coefficients</topic><topic>Electric power generation</topic><topic>Engineering models</topic><topic>Heuristic methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic power generation</topic><topic>Prediction models</topic><topic>S.i.: Some</topic><topic>Solar cells</topic><topic>Support vector machines</topic><topic>Theory of Computation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ling-Ling</creatorcontrib><creatorcontrib>Wen, Shi-Yu</creatorcontrib><creatorcontrib>Tseng, Ming-Lang</creatorcontrib><creatorcontrib>Chiu, Anthony S. F.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ling-Ling</au><au>Wen, Shi-Yu</au><au>Tseng, Ming-Lang</au><au>Chiu, Anthony S. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic array prediction on short-term output power method in Centralized power generation system</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>290</volume><issue>1-2</issue><spage>243</spage><epage>263</epage><pages>243-263</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The photovoltaic array directly determines the output power system of the entire photovoltaic power generation system. In order to more accurately predict the output power of the photovoltaic power generation system and reduce the impact of photovoltaic power generation on the power system, this study proposes a prediction model based on an improved firefly algorithm optimized support vector machine. The model introduces the linear decreasing inertia weight and the adaptive variable step-size in the original firefly algorithm that effectively improves the convergence speed and optimization ability of the algorithm. The multiple meteorological factors influencing the photovoltaic power generation were studied. Calculate the correlation coefficient of each meteorological influencing factor between the forecasted date and historical date to determine the training sample. The training samples were used to train the prediction model. The photovoltaic array output power in the sunny, cloudy and rainy days was predicted for the three weather styles using the trained prediction model. The results were compared the prediction results on the standard firefly algorithm-based optimizing support vector machine and particle swarm algorithm-based optimizing support vector machines. The proposed method showed that the mean absolute percentage error of the three-weather style prediction result is reduced by 1.66 and 3.30% and the mean square error is reduced by 0.21 and 0.27 compared to other methods. This method is verified to predict the PV array output power more accurately.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-018-2879-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2702-3590</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2020-07, Vol.290 (1-2), p.243-263
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_2034869464
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Arrays
Business and Management
Combinatorics
Correlation analysis
Correlation coefficients
Electric power generation
Engineering models
Heuristic methods
Mathematical analysis
Mathematical models
Operations research
Operations Research/Decision Theory
Optimization
Photovoltaic cells
Photovoltaic power generation
Prediction models
S.i.: Some
Solar cells
Support vector machines
Theory of Computation
Training
title Photovoltaic array prediction on short-term output power method in Centralized power generation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%20array%20prediction%20on%20short-term%20output%20power%20method%20in%20Centralized%20power%20generation%20system&rft.jtitle=Annals%20of%20operations%20research&rft.au=Li,%20Ling-Ling&rft.date=2020-07-01&rft.volume=290&rft.issue=1-2&rft.spage=243&rft.epage=263&rft.pages=243-263&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-018-2879-y&rft_dat=%3Cgale_proqu%3EA627726320%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034869464&rft_id=info:pmid/&rft_galeid=A627726320&rfr_iscdi=true