A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems

The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2018-08, Vol.178 (2), p.560-590
Hauptverfasser: Akbari, Fereshteh, Ghaznavi, Mehrdad, Khorram, Esmaile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 2
container_start_page 560
container_title Journal of optimization theory and applications
container_volume 178
creator Akbari, Fereshteh
Ghaznavi, Mehrdad
Khorram, Esmaile
description The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.
doi_str_mv 10.1007/s10957-018-1289-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2034504362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034504362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AdTSXmclkWYo3aKlYXUpIMmc0ZdrUJC3oynfwDX0Sp4ziytXhHL7_P_AhdErJOSVEXERKZCEwoRWmrJKY7aEBLQTHrBLVPhoQwhjmjMtDdBTjghAiK5EP0NMou4eti1Bndzpa30JK7uvjcw5BN27lsrnVrQ7uXSfnV9kU0ouvs8aHbLppu5NZgE1uC9lsndzyF7sL3rSwjMfooNFthJOfOUSPV5cP4xs8mV3fjkcTbDktE4ba2AoYmKYRWtbGmNyWottLKgvKjaSMm4JDk4u8tLIqhZG2yKG2vOGCaD5EZ33vOvjXDcSkFn4TVt1LxQjPC5LzknUU7SkbfIwBGrUObqnDm6JE7Syq3qLqLKqdRbXLsD4TO3b1DOGv-f_QN4Ued9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034504362</pqid></control><display><type>article</type><title>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akbari, Fereshteh ; Ghaznavi, Mehrdad ; Khorram, Esmaile</creator><creatorcontrib>Akbari, Fereshteh ; Ghaznavi, Mehrdad ; Khorram, Esmaile</creatorcontrib><description>The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-018-1289-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Convexity ; Engineering ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Pareto optimum ; Slack variables ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2018-08, Vol.178 (2), p.560-590</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</citedby><cites>FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</cites><orcidid>0000-0002-6274-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-018-1289-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-018-1289-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Akbari, Fereshteh</creatorcontrib><creatorcontrib>Ghaznavi, Mehrdad</creatorcontrib><creatorcontrib>Khorram, Esmaile</creatorcontrib><title>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Slack variables</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G7AdTSXmclkWYo3aKlYXUpIMmc0ZdrUJC3oynfwDX0Sp4ziytXhHL7_P_AhdErJOSVEXERKZCEwoRWmrJKY7aEBLQTHrBLVPhoQwhjmjMtDdBTjghAiK5EP0NMou4eti1Bndzpa30JK7uvjcw5BN27lsrnVrQ7uXSfnV9kU0ouvs8aHbLppu5NZgE1uC9lsndzyF7sL3rSwjMfooNFthJOfOUSPV5cP4xs8mV3fjkcTbDktE4ba2AoYmKYRWtbGmNyWottLKgvKjaSMm4JDk4u8tLIqhZG2yKG2vOGCaD5EZ33vOvjXDcSkFn4TVt1LxQjPC5LzknUU7SkbfIwBGrUObqnDm6JE7Syq3qLqLKqdRbXLsD4TO3b1DOGv-f_QN4Ued9Y</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Akbari, Fereshteh</creator><creator>Ghaznavi, Mehrdad</creator><creator>Khorram, Esmaile</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6274-7076</orcidid></search><sort><creationdate>20180801</creationdate><title>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</title><author>Akbari, Fereshteh ; Ghaznavi, Mehrdad ; Khorram, Esmaile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Slack variables</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Fereshteh</creatorcontrib><creatorcontrib>Ghaznavi, Mehrdad</creatorcontrib><creatorcontrib>Khorram, Esmaile</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Fereshteh</au><au>Ghaznavi, Mehrdad</au><au>Khorram, Esmaile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>178</volume><issue>2</issue><spage>560</spage><epage>590</epage><pages>560-590</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-018-1289-2</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-6274-7076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2018-08, Vol.178 (2), p.560-590
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2034504362
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Convexity
Engineering
Mathematical programming
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Pareto optimum
Slack variables
Theory of Computation
title A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Revised%20Pascoletti%E2%80%93Serafini%20Scalarization%20Method%20for%20Multiobjective%20Optimization%20Problems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Akbari,%20Fereshteh&rft.date=2018-08-01&rft.volume=178&rft.issue=2&rft.spage=560&rft.epage=590&rft.pages=560-590&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-018-1289-2&rft_dat=%3Cproquest_cross%3E2034504362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034504362&rft_id=info:pmid/&rfr_iscdi=true