A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems
The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2018-08, Vol.178 (2), p.560-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 2 |
container_start_page | 560 |
container_title | Journal of optimization theory and applications |
container_volume | 178 |
creator | Akbari, Fereshteh Ghaznavi, Mehrdad Khorram, Esmaile |
description | The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples. |
doi_str_mv | 10.1007/s10957-018-1289-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2034504362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034504362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AdTSXmclkWYo3aKlYXUpIMmc0ZdrUJC3oynfwDX0Sp4ziytXhHL7_P_AhdErJOSVEXERKZCEwoRWmrJKY7aEBLQTHrBLVPhoQwhjmjMtDdBTjghAiK5EP0NMou4eti1Bndzpa30JK7uvjcw5BN27lsrnVrQ7uXSfnV9kU0ouvs8aHbLppu5NZgE1uC9lsndzyF7sL3rSwjMfooNFthJOfOUSPV5cP4xs8mV3fjkcTbDktE4ba2AoYmKYRWtbGmNyWottLKgvKjaSMm4JDk4u8tLIqhZG2yKG2vOGCaD5EZ33vOvjXDcSkFn4TVt1LxQjPC5LzknUU7SkbfIwBGrUObqnDm6JE7Syq3qLqLKqdRbXLsD4TO3b1DOGv-f_QN4Ued9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034504362</pqid></control><display><type>article</type><title>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akbari, Fereshteh ; Ghaznavi, Mehrdad ; Khorram, Esmaile</creator><creatorcontrib>Akbari, Fereshteh ; Ghaznavi, Mehrdad ; Khorram, Esmaile</creatorcontrib><description>The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-018-1289-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Convexity ; Engineering ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Pareto optimum ; Slack variables ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2018-08, Vol.178 (2), p.560-590</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</citedby><cites>FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</cites><orcidid>0000-0002-6274-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-018-1289-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-018-1289-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Akbari, Fereshteh</creatorcontrib><creatorcontrib>Ghaznavi, Mehrdad</creatorcontrib><creatorcontrib>Khorram, Esmaile</creatorcontrib><title>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Slack variables</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKAzEUhoMoWKsP4G7AdTSXmclkWYo3aKlYXUpIMmc0ZdrUJC3oynfwDX0Sp4ziytXhHL7_P_AhdErJOSVEXERKZCEwoRWmrJKY7aEBLQTHrBLVPhoQwhjmjMtDdBTjghAiK5EP0NMou4eti1Bndzpa30JK7uvjcw5BN27lsrnVrQ7uXSfnV9kU0ouvs8aHbLppu5NZgE1uC9lsndzyF7sL3rSwjMfooNFthJOfOUSPV5cP4xs8mV3fjkcTbDktE4ba2AoYmKYRWtbGmNyWottLKgvKjaSMm4JDk4u8tLIqhZG2yKG2vOGCaD5EZ33vOvjXDcSkFn4TVt1LxQjPC5LzknUU7SkbfIwBGrUObqnDm6JE7Syq3qLqLKqdRbXLsD4TO3b1DOGv-f_QN4Ued9Y</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Akbari, Fereshteh</creator><creator>Ghaznavi, Mehrdad</creator><creator>Khorram, Esmaile</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6274-7076</orcidid></search><sort><creationdate>20180801</creationdate><title>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</title><author>Akbari, Fereshteh ; Ghaznavi, Mehrdad ; Khorram, Esmaile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-edbc8e2ebff7a9dbbb4c672eb619513b9123b53ef4746c9867b9c54edc3f370a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Slack variables</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Fereshteh</creatorcontrib><creatorcontrib>Ghaznavi, Mehrdad</creatorcontrib><creatorcontrib>Khorram, Esmaile</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Fereshteh</au><au>Ghaznavi, Mehrdad</au><au>Khorram, Esmaile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>178</volume><issue>2</issue><spage>560</spage><epage>590</epage><pages>560-590</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-018-1289-2</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-6274-7076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2018-08, Vol.178 (2), p.560-590 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2034504362 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Convexity Engineering Mathematical programming Mathematics Mathematics and Statistics Multiple objective analysis Operations Research/Decision Theory Optimization Pareto optimum Slack variables Theory of Computation |
title | A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Revised%20Pascoletti%E2%80%93Serafini%20Scalarization%20Method%20for%20Multiobjective%20Optimization%20Problems&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Akbari,%20Fereshteh&rft.date=2018-08-01&rft.volume=178&rft.issue=2&rft.spage=560&rft.epage=590&rft.pages=560-590&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-018-1289-2&rft_dat=%3Cproquest_cross%3E2034504362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034504362&rft_id=info:pmid/&rfr_iscdi=true |