Efficient Divide-and-Conquer Classification Based on Parallel Feature-Space Decomposition for Distributed Systems

This paper presents a divide-and-conquer (DC) approach based on feature-space decomposition for classification. When large-scale data sets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guaran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2018-06, Vol.12 (2), p.1492-1498
Hauptverfasser: Guo, Qi, Chen, Bo-Wei, Rho, Seungmin, Ji, Wen, Jiang, Feng, Ji, Xiangyang, Kung, Sun-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1498
container_issue 2
container_start_page 1492
container_title IEEE systems journal
container_volume 12
creator Guo, Qi
Chen, Bo-Wei
Rho, Seungmin
Ji, Wen
Jiang, Feng
Ji, Xiangyang
Kung, Sun-Yuan
description This paper presents a divide-and-conquer (DC) approach based on feature-space decomposition for classification. When large-scale data sets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guarantee separability between classes, owing to overfitting. To overcome such problems, this paper proposes a novel DC approach on feature spaces consisting of three steps. First, we divide the feature space into several subspaces using the decomposition method proposed in this paper. Subsequently, these feature subspaces are sent into individual local classifiers for training. Finally, the outcome of local classifiers are fused together to generate the final classification results. We also propose a Cascade-TRBFKRR classifier to reweight training samples for data refinement. Experiments on large-scale data sets are carried out for performance evaluation. The results show that the error rates of the proposed DC method decreased compared with the state-of-the-art fast support vector machine solvers, e.g., reducing error rates by 10.53% and 7.53% on RCV1 and covtype data sets, respectively.
doi_str_mv 10.1109/JSYST.2015.2478800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2034448355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7293604</ieee_id><sourcerecordid>2034448355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-708c1f36a8f20fa9edf237d5339a94c8c0dff2c08a30044b7873f260fcf837e93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwA7CJxNplYjuxvYS05aFKIKUsWEWuM5ZcpUlqp0j9e9KHWM0szrmjuVF0n8AkSUA9fRQ_xXJCIUknlAspAS6iUaKYIIoyfnncKZGJ5NfRTQhrgFSmQo2i7cxaZxw2fTx1v65CopuK5G2z3aGP81qH4AZA965t4hcdsIqH5Ut7XddYx3PU_c4jKTptMJ6iaTddG9yRtq0fMkPv3WrXD16xDz1uwm10ZXUd8O48x9H3fLbM38ji8_U9f14Qw7K0JwKkSSzLtLQUrFZYWcpElTKmtOJGGqispQakZgCcr4QUzNIMrLGSCVRsHD2ecjvfDs-Evly3O98MJ0sKjHMuWZoOFD1RxrcheLRl591G-32ZQHmotjxWWx6qLc_VDtLDSXKI-C8IqlgGnP0Bghp20Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034448355</pqid></control><display><type>article</type><title>Efficient Divide-and-Conquer Classification Based on Parallel Feature-Space Decomposition for Distributed Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Qi ; Chen, Bo-Wei ; Rho, Seungmin ; Ji, Wen ; Jiang, Feng ; Ji, Xiangyang ; Kung, Sun-Yuan</creator><creatorcontrib>Guo, Qi ; Chen, Bo-Wei ; Rho, Seungmin ; Ji, Wen ; Jiang, Feng ; Ji, Xiangyang ; Kung, Sun-Yuan</creatorcontrib><description>This paper presents a divide-and-conquer (DC) approach based on feature-space decomposition for classification. When large-scale data sets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guarantee separability between classes, owing to overfitting. To overcome such problems, this paper proposes a novel DC approach on feature spaces consisting of three steps. First, we divide the feature space into several subspaces using the decomposition method proposed in this paper. Subsequently, these feature subspaces are sent into individual local classifiers for training. Finally, the outcome of local classifiers are fused together to generate the final classification results. We also propose a Cascade-TRBFKRR classifier to reweight training samples for data refinement. Experiments on large-scale data sets are carried out for performance evaluation. The results show that the error rates of the proposed DC method decreased compared with the state-of-the-art fast support vector machine solvers, e.g., reducing error rates by 10.53% and 7.53% on RCV1 and covtype data sets, respectively.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2015.2478800</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Classification ; Classifiers ; Computer networks ; Datasets ; Decomposition ; divide and conquer (DC) ; feature-space decomposition ; feature-space division ; fusion ; Indexes ; Kernel ; Matrix decomposition ; Performance evaluation ; Solvers ; Subspaces ; Support vector machines ; Time complexity ; Training</subject><ispartof>IEEE systems journal, 2018-06, Vol.12 (2), p.1492-1498</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-708c1f36a8f20fa9edf237d5339a94c8c0dff2c08a30044b7873f260fcf837e93</citedby><cites>FETCH-LOGICAL-c365t-708c1f36a8f20fa9edf237d5339a94c8c0dff2c08a30044b7873f260fcf837e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7293604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7293604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Qi</creatorcontrib><creatorcontrib>Chen, Bo-Wei</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Ji, Wen</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Ji, Xiangyang</creatorcontrib><creatorcontrib>Kung, Sun-Yuan</creatorcontrib><title>Efficient Divide-and-Conquer Classification Based on Parallel Feature-Space Decomposition for Distributed Systems</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>This paper presents a divide-and-conquer (DC) approach based on feature-space decomposition for classification. When large-scale data sets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guarantee separability between classes, owing to overfitting. To overcome such problems, this paper proposes a novel DC approach on feature spaces consisting of three steps. First, we divide the feature space into several subspaces using the decomposition method proposed in this paper. Subsequently, these feature subspaces are sent into individual local classifiers for training. Finally, the outcome of local classifiers are fused together to generate the final classification results. We also propose a Cascade-TRBFKRR classifier to reweight training samples for data refinement. Experiments on large-scale data sets are carried out for performance evaluation. The results show that the error rates of the proposed DC method decreased compared with the state-of-the-art fast support vector machine solvers, e.g., reducing error rates by 10.53% and 7.53% on RCV1 and covtype data sets, respectively.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer networks</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>divide and conquer (DC)</subject><subject>feature-space decomposition</subject><subject>feature-space division</subject><subject>fusion</subject><subject>Indexes</subject><subject>Kernel</subject><subject>Matrix decomposition</subject><subject>Performance evaluation</subject><subject>Solvers</subject><subject>Subspaces</subject><subject>Support vector machines</subject><subject>Time complexity</subject><subject>Training</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwA7CJxNplYjuxvYS05aFKIKUsWEWuM5ZcpUlqp0j9e9KHWM0szrmjuVF0n8AkSUA9fRQ_xXJCIUknlAspAS6iUaKYIIoyfnncKZGJ5NfRTQhrgFSmQo2i7cxaZxw2fTx1v65CopuK5G2z3aGP81qH4AZA965t4hcdsIqH5Ut7XddYx3PU_c4jKTptMJ6iaTddG9yRtq0fMkPv3WrXD16xDz1uwm10ZXUd8O48x9H3fLbM38ji8_U9f14Qw7K0JwKkSSzLtLQUrFZYWcpElTKmtOJGGqispQakZgCcr4QUzNIMrLGSCVRsHD2ecjvfDs-Evly3O98MJ0sKjHMuWZoOFD1RxrcheLRl591G-32ZQHmotjxWWx6qLc_VDtLDSXKI-C8IqlgGnP0Bghp20Q</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Guo, Qi</creator><creator>Chen, Bo-Wei</creator><creator>Rho, Seungmin</creator><creator>Ji, Wen</creator><creator>Jiang, Feng</creator><creator>Ji, Xiangyang</creator><creator>Kung, Sun-Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Efficient Divide-and-Conquer Classification Based on Parallel Feature-Space Decomposition for Distributed Systems</title><author>Guo, Qi ; Chen, Bo-Wei ; Rho, Seungmin ; Ji, Wen ; Jiang, Feng ; Ji, Xiangyang ; Kung, Sun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-708c1f36a8f20fa9edf237d5339a94c8c0dff2c08a30044b7873f260fcf837e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer networks</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>divide and conquer (DC)</topic><topic>feature-space decomposition</topic><topic>feature-space division</topic><topic>fusion</topic><topic>Indexes</topic><topic>Kernel</topic><topic>Matrix decomposition</topic><topic>Performance evaluation</topic><topic>Solvers</topic><topic>Subspaces</topic><topic>Support vector machines</topic><topic>Time complexity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qi</creatorcontrib><creatorcontrib>Chen, Bo-Wei</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Ji, Wen</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Ji, Xiangyang</creatorcontrib><creatorcontrib>Kung, Sun-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Qi</au><au>Chen, Bo-Wei</au><au>Rho, Seungmin</au><au>Ji, Wen</au><au>Jiang, Feng</au><au>Ji, Xiangyang</au><au>Kung, Sun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Divide-and-Conquer Classification Based on Parallel Feature-Space Decomposition for Distributed Systems</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>1492</spage><epage>1498</epage><pages>1492-1498</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>This paper presents a divide-and-conquer (DC) approach based on feature-space decomposition for classification. When large-scale data sets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guarantee separability between classes, owing to overfitting. To overcome such problems, this paper proposes a novel DC approach on feature spaces consisting of three steps. First, we divide the feature space into several subspaces using the decomposition method proposed in this paper. Subsequently, these feature subspaces are sent into individual local classifiers for training. Finally, the outcome of local classifiers are fused together to generate the final classification results. We also propose a Cascade-TRBFKRR classifier to reweight training samples for data refinement. Experiments on large-scale data sets are carried out for performance evaluation. The results show that the error rates of the proposed DC method decreased compared with the state-of-the-art fast support vector machine solvers, e.g., reducing error rates by 10.53% and 7.53% on RCV1 and covtype data sets, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2015.2478800</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2018-06, Vol.12 (2), p.1492-1498
issn 1932-8184
1937-9234
language eng
recordid cdi_proquest_journals_2034448355
source IEEE Electronic Library (IEL)
subjects Accuracy
Classification
Classifiers
Computer networks
Datasets
Decomposition
divide and conquer (DC)
feature-space decomposition
feature-space division
fusion
Indexes
Kernel
Matrix decomposition
Performance evaluation
Solvers
Subspaces
Support vector machines
Time complexity
Training
title Efficient Divide-and-Conquer Classification Based on Parallel Feature-Space Decomposition for Distributed Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Divide-and-Conquer%20Classification%20Based%20on%20Parallel%20Feature-Space%20Decomposition%20for%20Distributed%20Systems&rft.jtitle=IEEE%20systems%20journal&rft.au=Guo,%20Qi&rft.date=2018-06-01&rft.volume=12&rft.issue=2&rft.spage=1492&rft.epage=1498&rft.pages=1492-1498&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2015.2478800&rft_dat=%3Cproquest_RIE%3E2034448355%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034448355&rft_id=info:pmid/&rft_ieee_id=7293604&rfr_iscdi=true