A Continuum Model of Mucosa with Glycan‐Ion Pairing

Advances in the study of glycosoaminoglycan biohydrogels, label‐free electrokinetic analysis of soft‐diffuse layers in contact with saline solutions, and elucidation of ion‐specific behavior in many biochemical systems offer the opportunity to marry these principal features in a new mathematical mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2018-03, Vol.27 (2), p.n/a
Hauptverfasser: Sterling, James D., Baker, Shenda M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Macromolecular theory and simulations
container_volume 27
creator Sterling, James D.
Baker, Shenda M.
description Advances in the study of glycosoaminoglycan biohydrogels, label‐free electrokinetic analysis of soft‐diffuse layers in contact with saline solutions, and elucidation of ion‐specific behavior in many biochemical systems offer the opportunity to marry these principal features in a new mathematical model of the mucosal glycocalyx. The model is based on the electroquasistatic subset of Maxwell's equations in the form of the steady‐state continuum Poisson–Boltzmann equation for electrostatics with explicit incorporation of pairwise binding of ions to fixed charged‐groups in the hydrogel. The pairwise association is modeled using reversible bimolecular reactions via stoichiometric dissociation constants that represent the rule of matching water affinities—the observation that similar hydration structures of the pair results in less dissociation. Applications of the model to specific gels and salts, including a heparin star polyethylene glycol (starPEG) biohydrogel and the airway surface liquid layer in cystic fibrosis, are presented to postulate some quantitative consequences of glycocalyx ion partitioning. A model of biohydrogels that includes ion‐specific behavior is presented. The mucosal surface is rich in anionic glycans of glycosoaminoglycans and mucins that pair with cations and biopolymers to establish ion gradients and electrical Donnan potentials. The model is applied to a heparin star polyethylene glycol (starPEG) gel and the effects of pairing of different cations to carboxylates and sulfates are explored.
doi_str_mv 10.1002/mats.201700079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2033482623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033482623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-8affbdd990f8a450ffec5373155bccc4a5d2f3b46d146b5dfa1e54e2041683223</originalsourceid><addsrcrecordid>eNqFkEFLwzAUgIMoOKdXzwHPnclL0jbHMXQONhSc55CmiXZ0zUxaRm_-BH-jv8SOiR49vXf4vvfgQ-iakgklBG63uo0TIDQjhGTyBI2oAJowSeXpsBOAhDLOz9FFjJsBkTKDERJTPPNNWzVdt8UrX9oae4dXnfFR433VvuF53RvdfH18LnyDn3QVqub1Ep05XUd79TPH6OX-bj17SJaP88VsukwME1wmuXauKEspics1F8Q5awTLGBWiMMZwLUpwrOBpSXlaiNJpagW3QDhNcwbAxujmeHcX_HtnY6s2vgvN8FIBYYznkAIbqMmRMsHHGKxTu1BtdegVJeqQRh3SqN80gyCPwr6qbf8PrVbT9fOf-w07sWem</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033482623</pqid></control><display><type>article</type><title>A Continuum Model of Mucosa with Glycan‐Ion Pairing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sterling, James D. ; Baker, Shenda M.</creator><creatorcontrib>Sterling, James D. ; Baker, Shenda M.</creatorcontrib><description>Advances in the study of glycosoaminoglycan biohydrogels, label‐free electrokinetic analysis of soft‐diffuse layers in contact with saline solutions, and elucidation of ion‐specific behavior in many biochemical systems offer the opportunity to marry these principal features in a new mathematical model of the mucosal glycocalyx. The model is based on the electroquasistatic subset of Maxwell's equations in the form of the steady‐state continuum Poisson–Boltzmann equation for electrostatics with explicit incorporation of pairwise binding of ions to fixed charged‐groups in the hydrogel. The pairwise association is modeled using reversible bimolecular reactions via stoichiometric dissociation constants that represent the rule of matching water affinities—the observation that similar hydration structures of the pair results in less dissociation. Applications of the model to specific gels and salts, including a heparin star polyethylene glycol (starPEG) biohydrogel and the airway surface liquid layer in cystic fibrosis, are presented to postulate some quantitative consequences of glycocalyx ion partitioning. A model of biohydrogels that includes ion‐specific behavior is presented. The mucosal surface is rich in anionic glycans of glycosoaminoglycans and mucins that pair with cations and biopolymers to establish ion gradients and electrical Donnan potentials. The model is applied to a heparin star polyethylene glycol (starPEG) gel and the effects of pairing of different cations to carboxylates and sulfates are explored.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.201700079</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>biohydrogels ; Boltzmann transport equation ; Continuum modeling ; Cystic fibrosis ; Electrokinetics ; Electrostatic properties ; Electrostatics ; Gels ; Glycan ; glycocalyx ; Heparin ; Hofmeister ; Hydrogels ; Mathematical models ; Maxwell's equations ; Mucosa ; Polyethylene glycol ; Respiratory tract ; Saline solutions ; Salts</subject><ispartof>Macromolecular theory and simulations, 2018-03, Vol.27 (2), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-8affbdd990f8a450ffec5373155bccc4a5d2f3b46d146b5dfa1e54e2041683223</citedby><cites>FETCH-LOGICAL-c3549-8affbdd990f8a450ffec5373155bccc4a5d2f3b46d146b5dfa1e54e2041683223</cites><orcidid>0000-0001-6110-0505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.201700079$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.201700079$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sterling, James D.</creatorcontrib><creatorcontrib>Baker, Shenda M.</creatorcontrib><title>A Continuum Model of Mucosa with Glycan‐Ion Pairing</title><title>Macromolecular theory and simulations</title><description>Advances in the study of glycosoaminoglycan biohydrogels, label‐free electrokinetic analysis of soft‐diffuse layers in contact with saline solutions, and elucidation of ion‐specific behavior in many biochemical systems offer the opportunity to marry these principal features in a new mathematical model of the mucosal glycocalyx. The model is based on the electroquasistatic subset of Maxwell's equations in the form of the steady‐state continuum Poisson–Boltzmann equation for electrostatics with explicit incorporation of pairwise binding of ions to fixed charged‐groups in the hydrogel. The pairwise association is modeled using reversible bimolecular reactions via stoichiometric dissociation constants that represent the rule of matching water affinities—the observation that similar hydration structures of the pair results in less dissociation. Applications of the model to specific gels and salts, including a heparin star polyethylene glycol (starPEG) biohydrogel and the airway surface liquid layer in cystic fibrosis, are presented to postulate some quantitative consequences of glycocalyx ion partitioning. A model of biohydrogels that includes ion‐specific behavior is presented. The mucosal surface is rich in anionic glycans of glycosoaminoglycans and mucins that pair with cations and biopolymers to establish ion gradients and electrical Donnan potentials. The model is applied to a heparin star polyethylene glycol (starPEG) gel and the effects of pairing of different cations to carboxylates and sulfates are explored.</description><subject>biohydrogels</subject><subject>Boltzmann transport equation</subject><subject>Continuum modeling</subject><subject>Cystic fibrosis</subject><subject>Electrokinetics</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Gels</subject><subject>Glycan</subject><subject>glycocalyx</subject><subject>Heparin</subject><subject>Hofmeister</subject><subject>Hydrogels</subject><subject>Mathematical models</subject><subject>Maxwell's equations</subject><subject>Mucosa</subject><subject>Polyethylene glycol</subject><subject>Respiratory tract</subject><subject>Saline solutions</subject><subject>Salts</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUgIMoOKdXzwHPnclL0jbHMXQONhSc55CmiXZ0zUxaRm_-BH-jv8SOiR49vXf4vvfgQ-iakgklBG63uo0TIDQjhGTyBI2oAJowSeXpsBOAhDLOz9FFjJsBkTKDERJTPPNNWzVdt8UrX9oae4dXnfFR433VvuF53RvdfH18LnyDn3QVqub1Ep05XUd79TPH6OX-bj17SJaP88VsukwME1wmuXauKEspics1F8Q5awTLGBWiMMZwLUpwrOBpSXlaiNJpagW3QDhNcwbAxujmeHcX_HtnY6s2vgvN8FIBYYznkAIbqMmRMsHHGKxTu1BtdegVJeqQRh3SqN80gyCPwr6qbf8PrVbT9fOf-w07sWem</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Sterling, James D.</creator><creator>Baker, Shenda M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6110-0505</orcidid></search><sort><creationdate>201803</creationdate><title>A Continuum Model of Mucosa with Glycan‐Ion Pairing</title><author>Sterling, James D. ; Baker, Shenda M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-8affbdd990f8a450ffec5373155bccc4a5d2f3b46d146b5dfa1e54e2041683223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biohydrogels</topic><topic>Boltzmann transport equation</topic><topic>Continuum modeling</topic><topic>Cystic fibrosis</topic><topic>Electrokinetics</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Gels</topic><topic>Glycan</topic><topic>glycocalyx</topic><topic>Heparin</topic><topic>Hofmeister</topic><topic>Hydrogels</topic><topic>Mathematical models</topic><topic>Maxwell's equations</topic><topic>Mucosa</topic><topic>Polyethylene glycol</topic><topic>Respiratory tract</topic><topic>Saline solutions</topic><topic>Salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sterling, James D.</creatorcontrib><creatorcontrib>Baker, Shenda M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sterling, James D.</au><au>Baker, Shenda M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Continuum Model of Mucosa with Glycan‐Ion Pairing</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2018-03</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>Advances in the study of glycosoaminoglycan biohydrogels, label‐free electrokinetic analysis of soft‐diffuse layers in contact with saline solutions, and elucidation of ion‐specific behavior in many biochemical systems offer the opportunity to marry these principal features in a new mathematical model of the mucosal glycocalyx. The model is based on the electroquasistatic subset of Maxwell's equations in the form of the steady‐state continuum Poisson–Boltzmann equation for electrostatics with explicit incorporation of pairwise binding of ions to fixed charged‐groups in the hydrogel. The pairwise association is modeled using reversible bimolecular reactions via stoichiometric dissociation constants that represent the rule of matching water affinities—the observation that similar hydration structures of the pair results in less dissociation. Applications of the model to specific gels and salts, including a heparin star polyethylene glycol (starPEG) biohydrogel and the airway surface liquid layer in cystic fibrosis, are presented to postulate some quantitative consequences of glycocalyx ion partitioning. A model of biohydrogels that includes ion‐specific behavior is presented. The mucosal surface is rich in anionic glycans of glycosoaminoglycans and mucins that pair with cations and biopolymers to establish ion gradients and electrical Donnan potentials. The model is applied to a heparin star polyethylene glycol (starPEG) gel and the effects of pairing of different cations to carboxylates and sulfates are explored.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.201700079</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6110-0505</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2018-03, Vol.27 (2), p.n/a
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_journals_2033482623
source Wiley Online Library Journals Frontfile Complete
subjects biohydrogels
Boltzmann transport equation
Continuum modeling
Cystic fibrosis
Electrokinetics
Electrostatic properties
Electrostatics
Gels
Glycan
glycocalyx
Heparin
Hofmeister
Hydrogels
Mathematical models
Maxwell's equations
Mucosa
Polyethylene glycol
Respiratory tract
Saline solutions
Salts
title A Continuum Model of Mucosa with Glycan‐Ion Pairing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Continuum%20Model%20of%20Mucosa%20with%20Glycan%E2%80%90Ion%20Pairing&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Sterling,%20James%20D.&rft.date=2018-03&rft.volume=27&rft.issue=2&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.201700079&rft_dat=%3Cproquest_cross%3E2033482623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033482623&rft_id=info:pmid/&rfr_iscdi=true