Self-Stabilizing Leader Election in Dynamic Networks
Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes O...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2018-07, Vol.62 (5), p.977-1047 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1047 |
---|---|
container_issue | 5 |
container_start_page | 977 |
container_title | Theory of computing systems |
container_volume | 62 |
creator | Datta, Ajoy K. Larmore, Lawrence L. |
description | Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes
O
(
D
i
a
m
) rounds, where
D
i
a
m
is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the
incumbency
property and the
no dithering
property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an
incumbent
to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once. |
doi_str_mv | 10.1007/s00224-017-9758-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032735681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032735681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZ7-QotX5A0UP1vGw2k7I1TepuitRfb2oET55mYJ73HXgIuWRwzQDMTQLgXFJghhZG5bQ4IhMmhaAgCzj-2TmVQsEpOUtpDQAiB5gQucSmpsvelaEJX6FdZQt0FcZs3qDvQ9dmoc3u9q3bBJ89Y__Zxfd0Tk5q1yS8-J1T8nY_f5090sXLw9PsdkG9YLqnvvCglRSlLFUpDZbIjONFLXluhGGV45VmCjXwnGmRa1M5dJxpVdbDoTJiSq7G3m3sPnaYervudrEdXloOghuhdM4Gio2Uj11KEWu7jWHj4t4ysAc5dpRjBzn2IMcWQ4aPmTSw7QrjX_P_oW8L9mUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032735681</pqid></control><display><type>article</type><title>Self-Stabilizing Leader Election in Dynamic Networks</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Datta, Ajoy K. ; Larmore, Lawrence L.</creator><creatorcontrib>Datta, Ajoy K. ; Larmore, Lawrence L.</creatorcontrib><description>Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes
O
(
D
i
a
m
) rounds, where
D
i
a
m
is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the
incumbency
property and the
no dithering
property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an
incumbent
to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-017-9758-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Distributed processing ; Dithering ; Dynamical systems ; Theory of Computation</subject><ispartof>Theory of computing systems, 2018-07, Vol.62 (5), p.977-1047</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Theory of Computing Systems is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</citedby><cites>FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-017-9758-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-017-9758-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Datta, Ajoy K.</creatorcontrib><creatorcontrib>Larmore, Lawrence L.</creatorcontrib><title>Self-Stabilizing Leader Election in Dynamic Networks</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes
O
(
D
i
a
m
) rounds, where
D
i
a
m
is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the
incumbency
property and the
no dithering
property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an
incumbent
to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Distributed processing</subject><subject>Dithering</subject><subject>Dynamical systems</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZ7-QotX5A0UP1vGw2k7I1TepuitRfb2oET55mYJ73HXgIuWRwzQDMTQLgXFJghhZG5bQ4IhMmhaAgCzj-2TmVQsEpOUtpDQAiB5gQucSmpsvelaEJX6FdZQt0FcZs3qDvQ9dmoc3u9q3bBJ89Y__Zxfd0Tk5q1yS8-J1T8nY_f5090sXLw9PsdkG9YLqnvvCglRSlLFUpDZbIjONFLXluhGGV45VmCjXwnGmRa1M5dJxpVdbDoTJiSq7G3m3sPnaYervudrEdXloOghuhdM4Gio2Uj11KEWu7jWHj4t4ysAc5dpRjBzn2IMcWQ4aPmTSw7QrjX_P_oW8L9mUo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Datta, Ajoy K.</creator><creator>Larmore, Lawrence L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Self-Stabilizing Leader Election in Dynamic Networks</title><author>Datta, Ajoy K. ; Larmore, Lawrence L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Distributed processing</topic><topic>Dithering</topic><topic>Dynamical systems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Ajoy K.</creatorcontrib><creatorcontrib>Larmore, Lawrence L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Ajoy K.</au><au>Larmore, Lawrence L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Stabilizing Leader Election in Dynamic Networks</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>62</volume><issue>5</issue><spage>977</spage><epage>1047</epage><pages>977-1047</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><abstract>Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes
O
(
D
i
a
m
) rounds, where
D
i
a
m
is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the
incumbency
property and the
no dithering
property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an
incumbent
to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00224-017-9758-9</doi><tpages>71</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-4350 |
ispartof | Theory of computing systems, 2018-07, Vol.62 (5), p.977-1047 |
issn | 1432-4350 1433-0490 |
language | eng |
recordid | cdi_proquest_journals_2032735681 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Science Distributed processing Dithering Dynamical systems Theory of Computation |
title | Self-Stabilizing Leader Election in Dynamic Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Stabilizing%20Leader%20Election%20in%20Dynamic%20Networks&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Datta,%20Ajoy%20K.&rft.date=2018-07-01&rft.volume=62&rft.issue=5&rft.spage=977&rft.epage=1047&rft.pages=977-1047&rft.issn=1432-4350&rft.eissn=1433-0490&rft_id=info:doi/10.1007/s00224-017-9758-9&rft_dat=%3Cproquest_cross%3E2032735681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032735681&rft_id=info:pmid/&rfr_iscdi=true |