Self-Stabilizing Leader Election in Dynamic Networks

Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2018-07, Vol.62 (5), p.977-1047
Hauptverfasser: Datta, Ajoy K., Larmore, Lawrence L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1047
container_issue 5
container_start_page 977
container_title Theory of computing systems
container_volume 62
creator Datta, Ajoy K.
Larmore, Lawrence L.
description Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes O ( D i a m ) rounds, where D i a m is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the incumbency property and the no dithering property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an incumbent to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.
doi_str_mv 10.1007/s00224-017-9758-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032735681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032735681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZ7-QotX5A0UP1vGw2k7I1TepuitRfb2oET55mYJ73HXgIuWRwzQDMTQLgXFJghhZG5bQ4IhMmhaAgCzj-2TmVQsEpOUtpDQAiB5gQucSmpsvelaEJX6FdZQt0FcZs3qDvQ9dmoc3u9q3bBJ89Y__Zxfd0Tk5q1yS8-J1T8nY_f5090sXLw9PsdkG9YLqnvvCglRSlLFUpDZbIjONFLXluhGGV45VmCjXwnGmRa1M5dJxpVdbDoTJiSq7G3m3sPnaYervudrEdXloOghuhdM4Gio2Uj11KEWu7jWHj4t4ysAc5dpRjBzn2IMcWQ4aPmTSw7QrjX_P_oW8L9mUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032735681</pqid></control><display><type>article</type><title>Self-Stabilizing Leader Election in Dynamic Networks</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Datta, Ajoy K. ; Larmore, Lawrence L.</creator><creatorcontrib>Datta, Ajoy K. ; Larmore, Lawrence L.</creatorcontrib><description>Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes O ( D i a m ) rounds, where D i a m is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the incumbency property and the no dithering property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an incumbent to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-017-9758-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Distributed processing ; Dithering ; Dynamical systems ; Theory of Computation</subject><ispartof>Theory of computing systems, 2018-07, Vol.62 (5), p.977-1047</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Theory of Computing Systems is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</citedby><cites>FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-017-9758-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-017-9758-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Datta, Ajoy K.</creatorcontrib><creatorcontrib>Larmore, Lawrence L.</creatorcontrib><title>Self-Stabilizing Leader Election in Dynamic Networks</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes O ( D i a m ) rounds, where D i a m is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the incumbency property and the no dithering property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an incumbent to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Distributed processing</subject><subject>Dithering</subject><subject>Dynamical systems</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZ7-QotX5A0UP1vGw2k7I1TepuitRfb2oET55mYJ73HXgIuWRwzQDMTQLgXFJghhZG5bQ4IhMmhaAgCzj-2TmVQsEpOUtpDQAiB5gQucSmpsvelaEJX6FdZQt0FcZs3qDvQ9dmoc3u9q3bBJ89Y__Zxfd0Tk5q1yS8-J1T8nY_f5090sXLw9PsdkG9YLqnvvCglRSlLFUpDZbIjONFLXluhGGV45VmCjXwnGmRa1M5dJxpVdbDoTJiSq7G3m3sPnaYervudrEdXloOghuhdM4Gio2Uj11KEWu7jWHj4t4ysAc5dpRjBzn2IMcWQ4aPmTSw7QrjX_P_oW8L9mUo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Datta, Ajoy K.</creator><creator>Larmore, Lawrence L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Self-Stabilizing Leader Election in Dynamic Networks</title><author>Datta, Ajoy K. ; Larmore, Lawrence L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c9c06543b4b5b47ebe17a29f4287371da2d615e6028163867daea2165bfd61d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Distributed processing</topic><topic>Dithering</topic><topic>Dynamical systems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Ajoy K.</creatorcontrib><creatorcontrib>Larmore, Lawrence L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Ajoy K.</au><au>Larmore, Lawrence L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Stabilizing Leader Election in Dynamic Networks</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>62</volume><issue>5</issue><spage>977</spage><epage>1047</epage><pages>977-1047</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><abstract>Two silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs. A leader is elected for each connected component of the network. A BFS DAG, rooted at the leader, is constructed in each component. The construction takes O ( D i a m ) rounds, where D i a m is the maximum diameter of any component. Both algorithms are self-stabilizing, silent, and work under the unfair daemon, but use one unbounded integer variable. Algorithm DLE selects an arbitrary process to be the leader of each component. Algorithm DLEND (Distributed Leader Election No Dithering) has the incumbency property and the no dithering property. If the configuration is legitimate and a topological fault occurs, each component will elect, if possible, an incumbent to be its leader, i.e., a process which was a leader before the fault. Furthermore, during this computation, no process will change its choice of leader more than once.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00224-017-9758-9</doi><tpages>71</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2018-07, Vol.62 (5), p.977-1047
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_2032735681
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Distributed processing
Dithering
Dynamical systems
Theory of Computation
title Self-Stabilizing Leader Election in Dynamic Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Stabilizing%20Leader%20Election%20in%20Dynamic%20Networks&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Datta,%20Ajoy%20K.&rft.date=2018-07-01&rft.volume=62&rft.issue=5&rft.spage=977&rft.epage=1047&rft.pages=977-1047&rft.issn=1432-4350&rft.eissn=1433-0490&rft_id=info:doi/10.1007/s00224-017-9758-9&rft_dat=%3Cproquest_cross%3E2032735681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032735681&rft_id=info:pmid/&rfr_iscdi=true