On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations

In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2019-09, Vol.42 (5), p.2681-2699
Hauptverfasser: Ali, Zeeshan, Zada, Akbar, Shah, Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2699
container_issue 5
container_start_page 2681
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 42
creator Ali, Zeeshan
Zada, Akbar
Shah, Kamal
description In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.
doi_str_mv 10.1007/s40840-018-0625-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032641104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032641104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWLQP4C7gOnqTmclMl1JbLRS7qF2HzCSRlPlrkoF252v4ej6JKSO48m4u93LO4fAhdEfhgQLkjz6FIgUCtCDAWUaOF2jCaAEkZcAv0QQo44TnkF2jqfd7iJNxxhmdoGrT4l0tm-_PL4-3QZa2tuGETeewxPNu6Gut8Pbkg2487gx-69ratlo6vGr62lY24KWTVbBdK2v8bI3RTrfBxmNxGOT572_RlZG119PffYN2y8X7_JWsNy-r-dOaVAnlgeR5wTUzTCk9U5IrWpki1aaMZSXwUvGEMap4qitlCkUzkMUskzSJ-lLyRCY36H7M7V13GLQPYt8NLvbygkHCeEoppFFFR1XlOu-dNqJ3tpHuJCiIM04x4hQRpzjjFMfoYaPHR237od1f8v-mH91UelU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032641104</pqid></control><display><type>article</type><title>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</title><source>SpringerNature Journals</source><creator>Ali, Zeeshan ; Zada, Akbar ; Shah, Kamal</creator><creatorcontrib>Ali, Zeeshan ; Zada, Akbar ; Shah, Kamal</creatorcontrib><description>In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-018-0625-x</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Differential equations ; Existence theorems ; Fixed points (mathematics) ; Functional analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinear systems ; Stability analysis ; Uniqueness</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2019-09, Vol.42 (5), p.2681-2699</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</citedby><cites>FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-018-0625-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-018-0625-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><title>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Uniqueness</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KAzEUhYMoWLQP4C7gOnqTmclMl1JbLRS7qF2HzCSRlPlrkoF252v4ej6JKSO48m4u93LO4fAhdEfhgQLkjz6FIgUCtCDAWUaOF2jCaAEkZcAv0QQo44TnkF2jqfd7iJNxxhmdoGrT4l0tm-_PL4-3QZa2tuGETeewxPNu6Gut8Pbkg2487gx-69ratlo6vGr62lY24KWTVbBdK2v8bI3RTrfBxmNxGOT572_RlZG119PffYN2y8X7_JWsNy-r-dOaVAnlgeR5wTUzTCk9U5IrWpki1aaMZSXwUvGEMap4qitlCkUzkMUskzSJ-lLyRCY36H7M7V13GLQPYt8NLvbygkHCeEoppFFFR1XlOu-dNqJ3tpHuJCiIM04x4hQRpzjjFMfoYaPHR237od1f8v-mH91UelU</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Ali, Zeeshan</creator><creator>Zada, Akbar</creator><creator>Shah, Kamal</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190915</creationdate><title>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</title><author>Ali, Zeeshan ; Zada, Akbar ; Shah, Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zeeshan</au><au>Zada, Akbar</au><au>Shah, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>42</volume><issue>5</issue><spage>2681</spage><epage>2699</epage><pages>2681-2699</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-018-0625-x</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2019-09, Vol.42 (5), p.2681-2699
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2032641104
source SpringerNature Journals
subjects Applications of Mathematics
Differential equations
Existence theorems
Fixed points (mathematics)
Functional analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinear systems
Stability analysis
Uniqueness
title On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ulam%E2%80%99s%20Stability%20for%20a%20Coupled%20Systems%20of%20Nonlinear%20Implicit%20Fractional%20Differential%20Equations&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Ali,%20Zeeshan&rft.date=2019-09-15&rft.volume=42&rft.issue=5&rft.spage=2681&rft.epage=2699&rft.pages=2681-2699&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-018-0625-x&rft_dat=%3Cproquest_cross%3E2032641104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032641104&rft_id=info:pmid/&rfr_iscdi=true