On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations
In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractiona...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2019-09, Vol.42 (5), p.2681-2699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2699 |
---|---|
container_issue | 5 |
container_start_page | 2681 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 42 |
creator | Ali, Zeeshan Zada, Akbar Shah, Kamal |
description | In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results. |
doi_str_mv | 10.1007/s40840-018-0625-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032641104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032641104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWLQP4C7gOnqTmclMl1JbLRS7qF2HzCSRlPlrkoF252v4ej6JKSO48m4u93LO4fAhdEfhgQLkjz6FIgUCtCDAWUaOF2jCaAEkZcAv0QQo44TnkF2jqfd7iJNxxhmdoGrT4l0tm-_PL4-3QZa2tuGETeewxPNu6Gut8Pbkg2487gx-69ratlo6vGr62lY24KWTVbBdK2v8bI3RTrfBxmNxGOT572_RlZG119PffYN2y8X7_JWsNy-r-dOaVAnlgeR5wTUzTCk9U5IrWpki1aaMZSXwUvGEMap4qitlCkUzkMUskzSJ-lLyRCY36H7M7V13GLQPYt8NLvbygkHCeEoppFFFR1XlOu-dNqJ3tpHuJCiIM04x4hQRpzjjFMfoYaPHR237od1f8v-mH91UelU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032641104</pqid></control><display><type>article</type><title>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</title><source>SpringerNature Journals</source><creator>Ali, Zeeshan ; Zada, Akbar ; Shah, Kamal</creator><creatorcontrib>Ali, Zeeshan ; Zada, Akbar ; Shah, Kamal</creatorcontrib><description>In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-018-0625-x</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Differential equations ; Existence theorems ; Fixed points (mathematics) ; Functional analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinear systems ; Stability analysis ; Uniqueness</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2019-09, Vol.42 (5), p.2681-2699</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</citedby><cites>FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-018-0625-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-018-0625-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><title>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Uniqueness</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KAzEUhYMoWLQP4C7gOnqTmclMl1JbLRS7qF2HzCSRlPlrkoF252v4ej6JKSO48m4u93LO4fAhdEfhgQLkjz6FIgUCtCDAWUaOF2jCaAEkZcAv0QQo44TnkF2jqfd7iJNxxhmdoGrT4l0tm-_PL4-3QZa2tuGETeewxPNu6Gut8Pbkg2487gx-69ratlo6vGr62lY24KWTVbBdK2v8bI3RTrfBxmNxGOT572_RlZG119PffYN2y8X7_JWsNy-r-dOaVAnlgeR5wTUzTCk9U5IrWpki1aaMZSXwUvGEMap4qitlCkUzkMUskzSJ-lLyRCY36H7M7V13GLQPYt8NLvbygkHCeEoppFFFR1XlOu-dNqJ3tpHuJCiIM04x4hQRpzjjFMfoYaPHR237od1f8v-mH91UelU</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Ali, Zeeshan</creator><creator>Zada, Akbar</creator><creator>Shah, Kamal</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190915</creationdate><title>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</title><author>Ali, Zeeshan ; Zada, Akbar ; Shah, Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7786e2f2dde9da6d1cf84efb005a06bd63221d64ecdf8d150a895a13ddeba63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zeeshan</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zeeshan</au><au>Zada, Akbar</au><au>Shah, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>42</volume><issue>5</issue><spage>2681</spage><epage>2699</epage><pages>2681-2699</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized Ulam–Hyers–Rassias stability of the solutions to a nonlinear coupled systems of implicit fractional differential equations involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach contraction principle and Leray–Schauder of cone type. For stability, we utilize classical functional analysis. Also, an example is given to demonstrate our main theoretical results.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-018-0625-x</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2019-09, Vol.42 (5), p.2681-2699 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2032641104 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Differential equations Existence theorems Fixed points (mathematics) Functional analysis Mathematical analysis Mathematics Mathematics and Statistics Nonlinear equations Nonlinear systems Stability analysis Uniqueness |
title | On Ulam’s Stability for a Coupled Systems of Nonlinear Implicit Fractional Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ulam%E2%80%99s%20Stability%20for%20a%20Coupled%20Systems%20of%20Nonlinear%20Implicit%20Fractional%20Differential%20Equations&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Ali,%20Zeeshan&rft.date=2019-09-15&rft.volume=42&rft.issue=5&rft.spage=2681&rft.epage=2699&rft.pages=2681-2699&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-018-0625-x&rft_dat=%3Cproquest_cross%3E2032641104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032641104&rft_id=info:pmid/&rfr_iscdi=true |