Limit vector variational inequality problems via scalarization
We solve a general vector variational inequality problem in a finite—dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2018-11, Vol.72 (3), p.579-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 3 |
container_start_page | 579 |
container_title | Journal of global optimization |
container_volume | 72 |
creator | Bianchi, M. Konnov, I. V. Pini, R. |
description | We solve a general vector variational inequality problem in a finite—dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one. |
doi_str_mv | 10.1007/s10898-018-0657-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2032614760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718423107</galeid><sourcerecordid>A718423107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4feb5fefdd241af70ddb688717c494b6d7690c8974948ac9b3df9120441dd3923</originalsourceid><addsrcrecordid>eNp1kMtqAyEUhqW00PTyAN0NdD3p0dFRN4UQeoNAN-1aHC_BMJdEJ4H06Ws6ha6KHMTD98nPj9AdhjkG4A8Jg5CiBJynZrzkZ2iGGa9KInF9jmYgCSsZAL5EVyltAEAKRmbocRW6MBYHZ8YhFgcdgx7D0Ou2CL3b7XUbxmOxjUPTui4Vh6CLZHSbsa8f7gZdeN0md_t7X6PP56eP5Wu5en95Wy5WpakYG0vqXcO889YSirXnYG1TC8ExN1TSpra8lmCE5PkltJFNZb3EBCjF1laSVNfofvo3R9ntXRrVZtjHHDMpAhWpMeU1ZGo-UWvdOhV6P4xRm3ys64IZeudD3i84FpRUGHgW8CSYOKQUnVfbGDodjwqDOvWqpl5V7lWdelUnh0xOymy_dvEvyv_SN3_Jep0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032614760</pqid></control><display><type>article</type><title>Limit vector variational inequality problems via scalarization</title><source>Springer Nature - Complete Springer Journals</source><creator>Bianchi, M. ; Konnov, I. V. ; Pini, R.</creator><creatorcontrib>Bianchi, M. ; Konnov, I. V. ; Pini, R.</creatorcontrib><description>We solve a general vector variational inequality problem in a finite—dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-018-0657-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Inequality ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Optimization algorithms ; Portfolio management ; Real Functions</subject><ispartof>Journal of global optimization, 2018-11, Vol.72 (3), p.579-590</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4feb5fefdd241af70ddb688717c494b6d7690c8974948ac9b3df9120441dd3923</citedby><cites>FETCH-LOGICAL-c355t-4feb5fefdd241af70ddb688717c494b6d7690c8974948ac9b3df9120441dd3923</cites><orcidid>0000-0002-5843-6814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-018-0657-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-018-0657-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bianchi, M.</creatorcontrib><creatorcontrib>Konnov, I. V.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><title>Limit vector variational inequality problems via scalarization</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>We solve a general vector variational inequality problem in a finite—dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one.</description><subject>Computer Science</subject><subject>Inequality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Portfolio management</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtqAyEUhqW00PTyAN0NdD3p0dFRN4UQeoNAN-1aHC_BMJdEJ4H06Ws6ha6KHMTD98nPj9AdhjkG4A8Jg5CiBJynZrzkZ2iGGa9KInF9jmYgCSsZAL5EVyltAEAKRmbocRW6MBYHZ8YhFgcdgx7D0Ou2CL3b7XUbxmOxjUPTui4Vh6CLZHSbsa8f7gZdeN0md_t7X6PP56eP5Wu5en95Wy5WpakYG0vqXcO889YSirXnYG1TC8ExN1TSpra8lmCE5PkltJFNZb3EBCjF1laSVNfofvo3R9ntXRrVZtjHHDMpAhWpMeU1ZGo-UWvdOhV6P4xRm3ys64IZeudD3i84FpRUGHgW8CSYOKQUnVfbGDodjwqDOvWqpl5V7lWdelUnh0xOymy_dvEvyv_SN3_Jep0</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Bianchi, M.</creator><creator>Konnov, I. V.</creator><creator>Pini, R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5843-6814</orcidid></search><sort><creationdate>20181101</creationdate><title>Limit vector variational inequality problems via scalarization</title><author>Bianchi, M. ; Konnov, I. V. ; Pini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4feb5fefdd241af70ddb688717c494b6d7690c8974948ac9b3df9120441dd3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Inequality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Portfolio management</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, M.</creatorcontrib><creatorcontrib>Konnov, I. V.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, M.</au><au>Konnov, I. V.</au><au>Pini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit vector variational inequality problems via scalarization</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>72</volume><issue>3</issue><spage>579</spage><epage>590</epage><pages>579-590</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>We solve a general vector variational inequality problem in a finite—dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-018-0657-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5843-6814</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2018-11, Vol.72 (3), p.579-590 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2032614760 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Science Inequality Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Optimization algorithms Portfolio management Real Functions |
title | Limit vector variational inequality problems via scalarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20vector%20variational%20inequality%20problems%20via%20scalarization&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Bianchi,%20M.&rft.date=2018-11-01&rft.volume=72&rft.issue=3&rft.spage=579&rft.epage=590&rft.pages=579-590&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-018-0657-7&rft_dat=%3Cgale_proqu%3EA718423107%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032614760&rft_id=info:pmid/&rft_galeid=A718423107&rfr_iscdi=true |