Spatial interactions and optimal forest management on a fire-threatened landscape
Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for de...
Gespeichert in:
Veröffentlicht in: | Forest policy and economics 2017-10, Vol.83, p.107-120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | |
container_start_page | 107 |
container_title | Forest policy and economics |
container_volume | 83 |
creator | Lauer, Christopher J. Montgomery, Claire A. Dietterich, Thomas G. |
description | Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem.
•Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value. |
doi_str_mv | 10.1016/j.forpol.2017.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032450951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389934116304749</els_id><sourcerecordid>2032450951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoPPAQ8t06apB8XQRa_YEFEPYc0mWpLN6lJVvDfm6WehYEZmPfezHtZdkmhoECr67HonZ_dVJRA6wJSQXWUrWhTl3kNAo7TzJo2bxmnp9lZCCMkIFC2yl5eZxUHNZHBRvRKx8HZQJQ1xM1x2KVFksYQyU5Z9YE7tJE4SxTpB495_PSoIlo0ZEqcoNWM59lJr6aAF399nb3f371tHvPt88PT5naba9ZAzGsuqqbuhKFGUW40Y1SXvdHQtaynpmx607bcMNV1AiveiBKNaCrgQoPhZc3W2dWiO3v3tU8vytHtvU0nZQms5AJaQROKLyjtXQgeezn7ZMv_SAryEJ4c5RKePIQnIRVUiXaz0DA5-B7Qy6AHtBpNsq2jNG74X-AXRKx6mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032450951</pqid></control><display><type>article</type><title>Spatial interactions and optimal forest management on a fire-threatened landscape</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>Lauer, Christopher J. ; Montgomery, Claire A. ; Dietterich, Thomas G.</creator><creatorcontrib>Lauer, Christopher J. ; Montgomery, Claire A. ; Dietterich, Thomas G.</creatorcontrib><description>Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem.
•Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.</description><identifier>ISSN: 1389-9341</identifier><identifier>EISSN: 1872-7050</identifier><identifier>DOI: 10.1016/j.forpol.2017.07.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximate dynamic programming ; Dynamic programming ; Ecological disturbance ; Fire prevention ; Forest & brush fires ; Forest management ; Forestry ; Information management ; Landscape ; Learning algorithms ; Machine learning ; Management decisions ; Optimization ; Policies ; Reinforcement learning ; Risk ; Risk management ; Spatial ; Spatial data ; Values ; Wildland fire</subject><ispartof>Forest policy and economics, 2017-10, Vol.83, p.107-120</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</citedby><cites>FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1389934116304749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27845,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Lauer, Christopher J.</creatorcontrib><creatorcontrib>Montgomery, Claire A.</creatorcontrib><creatorcontrib>Dietterich, Thomas G.</creatorcontrib><title>Spatial interactions and optimal forest management on a fire-threatened landscape</title><title>Forest policy and economics</title><description>Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem.
•Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.</description><subject>Approximate dynamic programming</subject><subject>Dynamic programming</subject><subject>Ecological disturbance</subject><subject>Fire prevention</subject><subject>Forest & brush fires</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Information management</subject><subject>Landscape</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Management decisions</subject><subject>Optimization</subject><subject>Policies</subject><subject>Reinforcement learning</subject><subject>Risk</subject><subject>Risk management</subject><subject>Spatial</subject><subject>Spatial data</subject><subject>Values</subject><subject>Wildland fire</subject><issn>1389-9341</issn><issn>1872-7050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UE1LxDAQLaLguvoPPAQ8t06apB8XQRa_YEFEPYc0mWpLN6lJVvDfm6WehYEZmPfezHtZdkmhoECr67HonZ_dVJRA6wJSQXWUrWhTl3kNAo7TzJo2bxmnp9lZCCMkIFC2yl5eZxUHNZHBRvRKx8HZQJQ1xM1x2KVFksYQyU5Z9YE7tJE4SxTpB495_PSoIlo0ZEqcoNWM59lJr6aAF399nb3f371tHvPt88PT5naba9ZAzGsuqqbuhKFGUW40Y1SXvdHQtaynpmx607bcMNV1AiveiBKNaCrgQoPhZc3W2dWiO3v3tU8vytHtvU0nZQms5AJaQROKLyjtXQgeezn7ZMv_SAryEJ4c5RKePIQnIRVUiXaz0DA5-B7Qy6AHtBpNsq2jNG74X-AXRKx6mg</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Lauer, Christopher J.</creator><creator>Montgomery, Claire A.</creator><creator>Dietterich, Thomas G.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TQ</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>SOI</scope></search><sort><creationdate>201710</creationdate><title>Spatial interactions and optimal forest management on a fire-threatened landscape</title><author>Lauer, Christopher J. ; Montgomery, Claire A. ; Dietterich, Thomas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximate dynamic programming</topic><topic>Dynamic programming</topic><topic>Ecological disturbance</topic><topic>Fire prevention</topic><topic>Forest & brush fires</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Information management</topic><topic>Landscape</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Management decisions</topic><topic>Optimization</topic><topic>Policies</topic><topic>Reinforcement learning</topic><topic>Risk</topic><topic>Risk management</topic><topic>Spatial</topic><topic>Spatial data</topic><topic>Values</topic><topic>Wildland fire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauer, Christopher J.</creatorcontrib><creatorcontrib>Montgomery, Claire A.</creatorcontrib><creatorcontrib>Dietterich, Thomas G.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Environment Abstracts</collection><jtitle>Forest policy and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauer, Christopher J.</au><au>Montgomery, Claire A.</au><au>Dietterich, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial interactions and optimal forest management on a fire-threatened landscape</atitle><jtitle>Forest policy and economics</jtitle><date>2017-10</date><risdate>2017</risdate><volume>83</volume><spage>107</spage><epage>120</epage><pages>107-120</pages><issn>1389-9341</issn><eissn>1872-7050</eissn><abstract>Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem.
•Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.forpol.2017.07.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-9341 |
ispartof | Forest policy and economics, 2017-10, Vol.83, p.107-120 |
issn | 1389-9341 1872-7050 |
language | eng |
recordid | cdi_proquest_journals_2032450951 |
source | PAIS Index; Elsevier ScienceDirect Journals |
subjects | Approximate dynamic programming Dynamic programming Ecological disturbance Fire prevention Forest & brush fires Forest management Forestry Information management Landscape Learning algorithms Machine learning Management decisions Optimization Policies Reinforcement learning Risk Risk management Spatial Spatial data Values Wildland fire |
title | Spatial interactions and optimal forest management on a fire-threatened landscape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20interactions%20and%20optimal%20forest%20management%20on%20a%20fire-threatened%20landscape&rft.jtitle=Forest%20policy%20and%20economics&rft.au=Lauer,%20Christopher%20J.&rft.date=2017-10&rft.volume=83&rft.spage=107&rft.epage=120&rft.pages=107-120&rft.issn=1389-9341&rft.eissn=1872-7050&rft_id=info:doi/10.1016/j.forpol.2017.07.006&rft_dat=%3Cproquest_cross%3E2032450951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032450951&rft_id=info:pmid/&rft_els_id=S1389934116304749&rfr_iscdi=true |