Spatial interactions and optimal forest management on a fire-threatened landscape

Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forest policy and economics 2017-10, Vol.83, p.107-120
Hauptverfasser: Lauer, Christopher J., Montgomery, Claire A., Dietterich, Thomas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue
container_start_page 107
container_title Forest policy and economics
container_volume 83
creator Lauer, Christopher J.
Montgomery, Claire A.
Dietterich, Thomas G.
description Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem. •Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.
doi_str_mv 10.1016/j.forpol.2017.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2032450951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389934116304749</els_id><sourcerecordid>2032450951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoPPAQ8t06apB8XQRa_YEFEPYc0mWpLN6lJVvDfm6WehYEZmPfezHtZdkmhoECr67HonZ_dVJRA6wJSQXWUrWhTl3kNAo7TzJo2bxmnp9lZCCMkIFC2yl5eZxUHNZHBRvRKx8HZQJQ1xM1x2KVFksYQyU5Z9YE7tJE4SxTpB495_PSoIlo0ZEqcoNWM59lJr6aAF399nb3f371tHvPt88PT5naba9ZAzGsuqqbuhKFGUW40Y1SXvdHQtaynpmx607bcMNV1AiveiBKNaCrgQoPhZc3W2dWiO3v3tU8vytHtvU0nZQms5AJaQROKLyjtXQgeezn7ZMv_SAryEJ4c5RKePIQnIRVUiXaz0DA5-B7Qy6AHtBpNsq2jNG74X-AXRKx6mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032450951</pqid></control><display><type>article</type><title>Spatial interactions and optimal forest management on a fire-threatened landscape</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>Lauer, Christopher J. ; Montgomery, Claire A. ; Dietterich, Thomas G.</creator><creatorcontrib>Lauer, Christopher J. ; Montgomery, Claire A. ; Dietterich, Thomas G.</creatorcontrib><description>Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem. •Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.</description><identifier>ISSN: 1389-9341</identifier><identifier>EISSN: 1872-7050</identifier><identifier>DOI: 10.1016/j.forpol.2017.07.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximate dynamic programming ; Dynamic programming ; Ecological disturbance ; Fire prevention ; Forest &amp; brush fires ; Forest management ; Forestry ; Information management ; Landscape ; Learning algorithms ; Machine learning ; Management decisions ; Optimization ; Policies ; Reinforcement learning ; Risk ; Risk management ; Spatial ; Spatial data ; Values ; Wildland fire</subject><ispartof>Forest policy and economics, 2017-10, Vol.83, p.107-120</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</citedby><cites>FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1389934116304749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27845,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Lauer, Christopher J.</creatorcontrib><creatorcontrib>Montgomery, Claire A.</creatorcontrib><creatorcontrib>Dietterich, Thomas G.</creatorcontrib><title>Spatial interactions and optimal forest management on a fire-threatened landscape</title><title>Forest policy and economics</title><description>Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem. •Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.</description><subject>Approximate dynamic programming</subject><subject>Dynamic programming</subject><subject>Ecological disturbance</subject><subject>Fire prevention</subject><subject>Forest &amp; brush fires</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Information management</subject><subject>Landscape</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Management decisions</subject><subject>Optimization</subject><subject>Policies</subject><subject>Reinforcement learning</subject><subject>Risk</subject><subject>Risk management</subject><subject>Spatial</subject><subject>Spatial data</subject><subject>Values</subject><subject>Wildland fire</subject><issn>1389-9341</issn><issn>1872-7050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UE1LxDAQLaLguvoPPAQ8t06apB8XQRa_YEFEPYc0mWpLN6lJVvDfm6WehYEZmPfezHtZdkmhoECr67HonZ_dVJRA6wJSQXWUrWhTl3kNAo7TzJo2bxmnp9lZCCMkIFC2yl5eZxUHNZHBRvRKx8HZQJQ1xM1x2KVFksYQyU5Z9YE7tJE4SxTpB495_PSoIlo0ZEqcoNWM59lJr6aAF399nb3f371tHvPt88PT5naba9ZAzGsuqqbuhKFGUW40Y1SXvdHQtaynpmx607bcMNV1AiveiBKNaCrgQoPhZc3W2dWiO3v3tU8vytHtvU0nZQms5AJaQROKLyjtXQgeezn7ZMv_SAryEJ4c5RKePIQnIRVUiXaz0DA5-B7Qy6AHtBpNsq2jNG74X-AXRKx6mg</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Lauer, Christopher J.</creator><creator>Montgomery, Claire A.</creator><creator>Dietterich, Thomas G.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TQ</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>SOI</scope></search><sort><creationdate>201710</creationdate><title>Spatial interactions and optimal forest management on a fire-threatened landscape</title><author>Lauer, Christopher J. ; Montgomery, Claire A. ; Dietterich, Thomas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-745687b5d1da14dc331c2fdc0b93f1d28fd994d3abb5e64852ed586045c0d4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximate dynamic programming</topic><topic>Dynamic programming</topic><topic>Ecological disturbance</topic><topic>Fire prevention</topic><topic>Forest &amp; brush fires</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Information management</topic><topic>Landscape</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Management decisions</topic><topic>Optimization</topic><topic>Policies</topic><topic>Reinforcement learning</topic><topic>Risk</topic><topic>Risk management</topic><topic>Spatial</topic><topic>Spatial data</topic><topic>Values</topic><topic>Wildland fire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauer, Christopher J.</creatorcontrib><creatorcontrib>Montgomery, Claire A.</creatorcontrib><creatorcontrib>Dietterich, Thomas G.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Environment Abstracts</collection><jtitle>Forest policy and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauer, Christopher J.</au><au>Montgomery, Claire A.</au><au>Dietterich, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial interactions and optimal forest management on a fire-threatened landscape</atitle><jtitle>Forest policy and economics</jtitle><date>2017-10</date><risdate>2017</risdate><volume>83</volume><spage>107</spage><epage>120</epage><pages>107-120</pages><issn>1389-9341</issn><eissn>1872-7050</eissn><abstract>Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem. •Apply approximate dynamic programing to optimize management on a fire-threatened landscape.•Incorporate spatial interaction in a dynamic optimization framework.•Show that individual stand value depends on interactions with broader landscape.•Demonstrate a method to measure the effect of landscape condition on individual stand value.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.forpol.2017.07.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-9341
ispartof Forest policy and economics, 2017-10, Vol.83, p.107-120
issn 1389-9341
1872-7050
language eng
recordid cdi_proquest_journals_2032450951
source PAIS Index; Elsevier ScienceDirect Journals
subjects Approximate dynamic programming
Dynamic programming
Ecological disturbance
Fire prevention
Forest & brush fires
Forest management
Forestry
Information management
Landscape
Learning algorithms
Machine learning
Management decisions
Optimization
Policies
Reinforcement learning
Risk
Risk management
Spatial
Spatial data
Values
Wildland fire
title Spatial interactions and optimal forest management on a fire-threatened landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20interactions%20and%20optimal%20forest%20management%20on%20a%20fire-threatened%20landscape&rft.jtitle=Forest%20policy%20and%20economics&rft.au=Lauer,%20Christopher%20J.&rft.date=2017-10&rft.volume=83&rft.spage=107&rft.epage=120&rft.pages=107-120&rft.issn=1389-9341&rft.eissn=1872-7050&rft_id=info:doi/10.1016/j.forpol.2017.07.006&rft_dat=%3Cproquest_cross%3E2032450951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2032450951&rft_id=info:pmid/&rft_els_id=S1389934116304749&rfr_iscdi=true